
DbVisualizer 9.2 Users Guide

Page of 1 428

DbVisualizer 9.2

Users Guide

DbVisualizer 9.2 Users Guide

Page of 2 428

Table of Contents

1 DbVisualizer 9.2 __ 12

2 Getting Started ___ 13

2.1 Downloading ___ 13

2.2 Installing __ 13

2.2.1 Installing with an Installer __ 14

2.2.2 Installation from an archive file __ 14

2.3 Starting DbVisualizer __ 15

2.4 Evaluating the Pro Edition __ 15

2.5 Installing a Pro Edition License __ 16

2.5.1 Installing a License Key String __ 16

2.5.2 Installing a License Key File __ 16

2.5.3 Uninstalling the license key ___ 16

2.6 Creating a Connection - basics __ 17

2.6.1 Using the Connection Wizard ___ 17

2.6.2 Setting Up a Connection Manually ___ 21

2.7 Creating a Table - basics ___ 23

2.8 Viewing a Table - basics ___ 24

2.9 Editing a Table - basics __ 26

2.10 Executing SQL - basics ___ 27

2.11 Checking for Updates ___ 27

2.12 Printing __ 29

2.12.1 Printer Setup ___ 30

2.12.2 Printing a Grid, a Chart and Plain Text ___ 30

2.12.3 Printing a Graph __ 30

2.12.4 Print Preview ___ 30

3 Getting the Most Out of the GUI __ 32

3.1 Main Window Layout __ 32

3.2 Tab Types __ 33

3.2.1 Navigation Tabs ___ 33

3.2.2 Object View Tabs __ 34

3.2.3 SQL Commander Tabs __ 35

3.3 Opening a Tab ___ 36

3.4 Pinning a Tab __ 37

3.5 Closing a Tab __ 37

3.6 Listing Open Tabs __ 38

3.7 Maximizing and Minimizing a Tab __ 38

3.8 Floating a Tab ___ 39

3.9 Rearranging Tabs ___ 39

3.10 Changing the Tab Label ___ 41

DbVisualizer 9.2 Users Guide

Page of 3 428

3.11 Selecting a Node for a Tab ___ 42

3.12 Preserving Tabs Between Sessions __ 43

3.13 Using Tab Colors and Borders __ 43

3.14 Changing the GUI Apperance __ 44

3.15 Changing Keyboard Shortcuts __ 44

4 Managing Database Objects ___ 47

4.1 Opening a Database Object ___ 47

4.2 Perform Actions on Multiple Database Objects __ 47

4.3 Filtering Database Objects __ 49

4.3.1 Object Filtering __ 51

4.3.2 Object Type Visibility __ 53

4.3.3 Temporarily Disable Filtering ___ 55

4.3.4 Filter Sets __ 56

4.3.5 Show Only Default Database/Schema filter ______________________________________ 57

5 Working with Tables ___ 58

5.1 Creating a Table __ 58

5.1.1 Opening the Create Table Dialog __ 58

5.1.2 Columns Tab __ 60

5.1.3 Primary Key Tab ___ 62

5.1.4 Foreign Keys Tab __ 62

5.1.5 Unique Constraints Tab ___ 64

5.1.6 Check Constraints Tab __ 65

5.1.7 Indexes Tab __ 65

5.1.8 SQL Preview __ 66

5.1.9 Execute __ 67

5.2 Altering a Table __ 67

5.2.1 Opening the Alter Table Dialog __ 67

5.2.2 Columns Tab __ 69

5.2.3 Primary Key Tab ___ 71

5.2.4 Foreign Keys Tab __ 72

5.2.5 Unique Constraints Tab ___ 73

5.2.6 Check Constraints Tab __ 74

5.2.7 Indexes Tab __ 75

5.2.8 SQL Preview __ 76

5.2.9 Execute __ 76

5.3 Creating a Trigger __ 76

5.3.1 Opening the Create Trigger Dialog ___ 76

5.3.2 Trigger Editor ___ 78

5.4 Creating an Index ___ 78

5.5 Viewing Table Data ___ 80

5.5.1 Opening the Data tab ___ 80

5.5.2 Sorting ___ 82

5.5.3 Where Filter ___ 82

DbVisualizer 9.2 Users Guide

Page of 4 428

5.5.4 Quick Filter ___ 83

5.5.5 Max Rows/Max Chars ___ 85

5.5.6 Max Rows at First Display __ 86

5.5.7 Column Header Tooltips ___ 87

5.5.8 Highlight Primary Key Columns ___ 87

5.5.9 Show Only Some Columns ___ 87

5.5.10 Auto Resize Columns __ 88

5.5.11 Right-Click Menu Operations __ 88

5.5.12 Creating Monitors ___ 91

5.5.13 Aggregation Data for Selection ___ 91

5.6 Editing Table Data __ 92

5.6.1 Opening the Data tab ___ 93

5.6.2 Editing Data in the Grid __ 94

5.6.3 Copy/Paste ___ 95

5.6.4 Updates and Deletes Must Match Only One Table Row _____________________________ 97

5.6.5 Key Column(s) Chooser ___ 98

5.6.6 Editing Multiple Rows ___ 99

5.6.7 Data Type checking __ 99

5.6.8 New Line and Carriage Return __ 99

5.6.9 Using the Cell Editor/Viewer ___ 100

5.6.10 Using the Form Editor/Viewer ___ 101

5.6.11 Preview Changes __ 103

5.6.12 Editing Binary/BLOB and CLOB Data ___ 104

5.7 Working with Binary and BLOB Data ___ 104

5.8 Working with Large Text/CLOB Data ___ 105

5.9 Using Max Rows and Max Chars for a Table ___ 105

5.10 Changing the Data Display Format ___ 106

5.10.1 Date, Time and Timestamp formats __ 107

5.10.2 Number formats ___ 107

5.11 Exporting a Table ___ 107

5.11.1 Output Format ___ 108

5.11.2 Output Destination ___ 108

5.11.3 Options __ 109

5.11.4 Using Variables in Fields ___ 109

5.11.5 Exporting Binary/BLOB and CLOB Data _______________________________________ 109

5.11.6 Saving And Loading Settings ___ 110

5.11.7 Other Ways to Export Table Data __ 110

5.12 Importing Table Data __ 110

5.12.1 Input File Format and Other Options __ 111

5.12.2 Data Formats and Data Type Per Column _____________________________________ 114

5.12.3 Matching Columns and Data Types for an Existing Table _________________________ 116

5.12.4 Adjusting Table Declaration for a New Table ___________________________________ 118

5.12.5 Importing Binary/BLOB and CLOB Data (CSV Only) _____________________________ 120

DbVisualizer 9.2 Users Guide

Page of 5 428

5.12.6 Saving And Loading Settings ___ 120

5.12.7 Other Ways to Import Table Data __ 121

5.12.8 Known limitations __ 121

5.13 Comparing Tables __ 121

5.14 Viewing Table Relationships __ 122

5.15 Navigating Table Relationships __ 123

5.15.1 Opening the Navigator __ 123

5.15.2 Navigating Realtionships ___ 124

5.15.3 Adding Context Information to the Graph ______________________________________ 128

5.15.4 Arranging the Graph __ 129

5.15.5 Exporting and Printing the Graph __ 130

5.15.6 Opening the Navigator from the Data tab ______________________________________ 131

5.16 Viewing the Table DDL ___ 131

5.17 Filtering Tables in the Tree __ 131

5.18 Showing Row Count in the Tree __ 132

5.19 Using Permissions for Table Data Editing __ 132

5.20 Scripting a Table ___ 133

6 Working with Views ___ 134

6.1 Creating a View ___ 134

6.2 Altering a View __ 134

6.3 Editing a View ___ 134

6.4 Exporting a View __ 134

6.5 Viewing the View DDL __ 135

6.6 Filtering Views in the Tree ___ 135

6.7 Scripting a View ___ 135

7 Working with Procedures, Functions and Other Code Objects __________________________________ 137

7.1 Creating a Function __ 137

7.2 Creating a Procedure ___ 139

7.3 Creating Other Code Objects ___ 141

7.4 Editing a Code Object __ 142

7.5 Executing a Code Object __ 144

7.5.1 Executing in the Code Editor ___ 145

7.5.2 Executing in the SQL Commander __ 145

7.5.3 Using the Script Object Dialog ___ 147

7.6 Exporting a Code Object __ 148

7.7 Scripting a Code Object ___ 149

8 Working with Schemas __ 150

8.1 Creating a Schema ___ 150

8.2 Comparing Schemas ___ 150

8.3 Viewing Entity Relationships ___ 151

8.4 Exporting a Schema __ 152

8.4.1 Output Format __ 152

8.4.2 Output Destination __ 153

DbVisualizer 9.2 Users Guide

Page of 6 428

8.4.3 Object Types ___ 153

8.4.4 Options ___ 153

8.4.5 Using Variables in Fields __ 153

8.4.6 Saving And Loading Settings __ 154

8.5 Filtering Schemas in the Tree __ 154

9 Working with SQL __ 155

9.1 Selecting Database Connection, Catalog and Schema ___________________________________ 155

9.2 Editing SQL Scripts __ 156

9.2.1 Syntax Color Coding ___ 157

9.2.2 Charsets and Fonts __ 159

9.2.3 Loading and Saving Scripts ___ 159

9.2.4 Drag and Drop a File ___ 160

9.2.5 Drag and Drop Database Objects ___ 160

9.2.6 Loading and Saving Bookmarks and Monitors ___________________________________ 162

9.2.7 Navigating Between History Entries ___ 162

9.2.8 Confirming Overwriting Unsaved Changes ______________________________________ 162

9.2.9 SQL Formatting ___ 162

9.2.10 Auto Completion ___ 164

9.2.11 Recording and Playing Edit Macros __ 168

9.2.12 Folding Selected Text ___ 169

9.2.13 Selecting a Rectangular Area ___ 170

9.2.14 Tab Key Treatment ___ 170

9.2.15 Key Bindings __ 170

9.3 Using Editor Templates ___ 170

9.3.1 Using a Template ___ 171

9.3.2 Creating a new Template ___ 172

9.3.3 Editing or Deleting a Template ___ 172

9.3.4 Changing the Expand Keybinding ___ 173

9.4 Executing SQL Statements __ 173

9.4.1 Execute Multiple Statements ___ 173

9.4.2 Execute Only the Current Statement __ 174

9.4.3 Control Execution after a Warning or an Error ___________________________________ 174

9.5 Re-Executing SQL Statements ___ 175

9.5.1 Using Previous and Next in the SQL Commander ________________________________ 175

9.5.2 Using the SQL History Window ___ 175

9.5.3 Using Quick Load ___ 176

9.6 Executing Complex Statements ___ 177

9.6.1 Using Execute Buffer __ 178

9.6.2 Using an SQL Block ___ 178

9.6.3 Using the @delimiter command __ 178

9.7 Executing an External Script ___ 179

9.8 Locating SQL Errors __ 180

9.9 Analyzing (explain) Query Performance ___ 181

DbVisualizer 9.2 Users Guide

Page of 7 428

9.10 Auto Commit, Commit and Rollback __ 183

9.11 Managing Frequently Used SQL ___ 185

9.11.1 Creating, Editing and Organizing Bookmarks ___________________________________ 186

9.11.2 Executing Bookmarks ___ 187

9.11.3 Adding a Bookmark as a Favorite __ 188

9.11.4 Sharing Bookmarks ___ 188

9.11.5 Using Quick Load __ 188

9.12 Creating Queries Graphically __ 189

9.12.1 Creating a Query ___ 190

9.12.2 Testing the Query __ 200

9.12.3 Loading a Query From the Editor __ 201

9.12.4 Properties for the Query Builder ___ 201

9.12.5 Current Limitations ___ 203

9.13 Formatting SQL __ 203

9.14 Using Max Rows and Max Chars for Queries ___ 205

9.15 Getting the DDL for an Object ___ 206

9.16 Using the Log Tab __ 207

9.17 Writing to the Log Tab ___ 208

9.18 Using the DBMS Output Tab __ 208

9.19 Comparing SQL Scripts __ 209

9.20 Exporting Query Results ___ 209

9.20.1 Automatic table name to file mapping ___ 213

9.20.2 Multiple results to a single file ___ 213

9.20.3 Using predefined settings __ 214

9.20.4 Limit the number of exported rows ___ 214

9.21 Using Permissions in the SQL Commander ___ 214

9.22 Sending Comments to the Database with Statements ___________________________________ 216

9.23 Using Client-Side Commands ___ 217

9.24 Parameterized SQL - Variables and Parameter Markers _________________________________ 219

9.24.1 Using DbVisualizer Variables ___ 221

9.24.2 Using Parameter Markers __ 228

10 Working with Result Sets __ 233

10.1 Viewing a Result Set __ 233

10.1.1 Viewing as a Grid __ 233

10.1.2 Viewing as Text __ 233

10.1.3 Viewing as a Graph ___ 234

10.2 Editing a Result Set ___ 234

10.3 Exporting a Result Set ___ 235

10.4 Comparing Result Sets __ 235

10.5 Pinning Result Sets ___ 236

10.6 Show Result Sets in a Separate Window ___ 236

11 Working with Charts __ 237

11.1 Charting a Result Set __ 239

DbVisualizer 9.2 Users Guide

Page of 8 428

11.1.1 Selecting Category Column __ 240

11.1.2 Selecting Series ___ 241

11.1.3 Chart Type ___ 242

11.2 Chart Preferences __ 243

11.2.1 Appearance Preferences __ 243

11.2.2 Series Preferences ___ 245

11.3 Zooming __ 245

11.4 Export __ 245

12 Exporting a Grid ___ 247

12.1 Settings page __ 247

12.2 Data page ___ 249

12.2.1 Generating Test Data ___ 250

12.3 Preview ___ 253

12.4 Output Destination __ 253

12.5 Settings Menu ___ 254

13 Comparing Data ___ 255

13.1 Selecting the Objects to Compare __ 255

13.2 Comparing Text Data __ 256

13.3 Comparing Grids ___ 258

13.4 Comparing Cell Values ___ 263

14 Monitoring Data Changes __ 264

14.1 Creating a Monitored Query ___ 264

14.1.1 Monitor table row count __ 266

14.1.2 Monitor table row count difference ___ 268

14.2 Running a Monitored Query ___ 269

15 Accessing Frequently Used Objects __ 272

15.1 Keeping Tabs Open Between Sessions __ 272

15.2 Using Favorites __ 272

15.3 Using Scripts __ 275

16 Delimited Identifiers and Qualifiers ___ 276

17 Handling Transactions __ 277

17.1 Changing the Auto Commit Setting ___ 277

17.1.1 Changing Auto-Commit for a Database Type ___________________________________ 277

17.1.2 Changing Auto-Commit for a Connection ______________________________________ 277

17.1.3 Changing Auto-Commit for an SQL Commander tab _____________________________ 277

17.1.4 Changing Auto-Commit for a Statement Block __________________________________ 278

17.2 Setting Transaction Isolation __ 278

18 Database Connection Options __ 280

18.1 Setting Up a Connection Manually __ 280

18.1.1 Setting Up a Connection Manually ___ 280

18.2 Configuring Connection Properties ___ 282

18.3 Copying an Existing Connection ___ 286

18.4 Edit Multiple Database Connections __ 286

DbVisualizer 9.2 Users Guide

Page of 9 428

18.4.1 Changing the database driver ___ 288

18.5 Removing a Connection __ 288

18.6 Organizing Connections in Folders ___ 288

18.7 Rearranging Connections and Folders ___ 289

18.8 Setting Common Authentication Options ___ 289

18.9 Setting a Master Password ___ 290

18.9.1 Specifying a Master Password __ 291

18.9.2 Changing a Master Password ___ 291

18.9.3 Resetting the Master Password ___ 292

18.9.4 Connecting with a Master Password specified __________________________________ 292

18.9.5 Manually Requesting the Master Password for New Connections ___________________ 293

18.9.6 Showing the Encrypted Password in Cleartext __________________________________ 293

18.9.7 Declaring a Master Password Rule ___ 293

18.10 Using Connection Keep-Alive ___ 294

18.11 Using an SSH Tunnel ___ 294

18.12 Using Oracle TNS Names ___ 297

18.13 Using SQL Server Single-Sign-On or Windows Authentication ___________________________ 298

18.14 Using Variables in Connection Fields ___ 299

18.15 Automatically Connecting at Startup ___ 300

18.16 Executing SQL at Connect and Disconnect __ 300

18.17 Using a Single Shared Physical Connection ___ 301

18.17.1 Selecting the Single Shared Physical Connection Mode _________________________ 301

18.17.2 Data Manipulation with a Single Shared Physical Connection _____________________ 301

18.17.3 Transaction Handling with a Single Shared Physical Connection ___________________ 302

19 Finding Database Objects and Data __ 303

19.1 Finding and Replacing Text in the Editor ___ 303

19.2 Finding Data in a Grid ___ 303

19.3 Locating an Object in an SQL Statement ___ 303

19.4 Locating an Object in the Databases tab ___ 304

19.5 Searching a Connection __ 304

20 Exporting and Importing Settings __ 306

20.1 Export Settings ___ 306

20.2 Import Settings ___ 308

21 Command Line Interface __ 311

21.1 Command Line Options __ 311

21.2 Examples ___ 312

21.2.1 Executing single statements __ 312

21.2.2 Executing scripts ___ 314

21.2.3 Controlling the output ___ 315

21.2.4 Combining OS scripts, the command line interface and DbVisualizer variables _________ 316

22 Database Profiles __ 318

22.1 Understanding Database Profiles ___ 318

22.1.1 Affected DbVisualizer features __ 320

DbVisualizer 9.2 Users Guide

Page of 10 428

22.1.2 How a Database Profile is loaded __ 322

22.2 Creating a Database Profile ___ 323

22.3 Extending a Database Profile __ 323

22.3.1 Extending Commands ___ 324

22.3.2 Extending Database Objects Tree ___ 325

22.3.3 Extending Actions __ 329

22.3.4 Extending Object Views ___ 330

22.3.5 Remove an Element __ 331

22.3.6 Complete sample Database Profile ___ 331

22.4 Top level XML Elements ___ 333

22.4.1 XML template ___ 334

22.4.2 XML element - DatabaseProfile ___ 335

22.4.3 XML element - InitCommands ___ 336

22.4.4 XML element - Commands ___ 339

22.4.5 XML element - ObjectsTreeDef __ 345

22.4.6 XML element - ObjectsViewDef ___ 355

22.4.7 XML element - ObjectsActionDef __ 371

22.5 Icons ___ 393

22.5.1 Introduction ___ 393

22.5.2 icons.prefs file ___ 393

22.5.3 Icons Search Path __ 394

22.6 Conditional Processing ___ 395

22.6.1 Introduction ___ 395

22.6.2 Conditional processing when database connection is established ___________________ 396

22.6.3 Conditional processing during command execution ______________________________ 397

22.7 Database Profile Utilities ___ 398

22.7.1 Analyze Database Profile __ 398

22.7.2 Show All Type and Icon Attributes ___ 399

22.7.3 Show Available Icons ___ 400

22.7.4 Export Merged Profile ___ 400

22.7.5 Configure Search Path __ 400

22.7.6 Reload Database Profiles List ___ 400

23 Troubleshooting ___ 401

23.1 Debugging DbVisualizer __ 401

23.2 Fixing Connection Issues ___ 402

23.3 Handling Dropped Connections __ 403

23.4 Handling Memory Constraints ___ 404

23.5 Reporting Issues ___ 406

23.6 Using special characters in passwords __ 407

24 Reference Material ___ 408

24.1 GUI Command Line Arguments __ 408

24.2 Installation Structure ___ 409

24.3 Installing a JDBC Driver __ 409

DbVisualizer 9.2 Users Guide

Page of 11 428

24.3.1 What is a JDBC Driver? ___ 410

24.3.2 Get the JDBC driver file(s) ___ 410

24.3.3 Driver Manager __ 411

24.4 Setting Up a JNDI Connection ___ 419

24.5 Special Properties __ 421

25 Index __ 424

DbVisualizer 9.2 Users Guide

Page of 12 428

1 DbVisualizer 9.2

DbVisualizer 9.2 Users Guide

Page of 13 428

1.

2.

3.

4.

2 Getting Started
DbVisualizer is a feature rich, intuitive multi-database tool for developers and database administrators, providing

a single powerful interface across a wide variety of operating systems. With its easy-to-use and clean interface,

DbVisualizer has proven to be one of the most cost effective database tools available, yet to mention that it runs

on all major operating systems and supports all major RDBMS that are available. Users only need to learn and

master one application. DbVisualizer integrates transparently with the operating system being used.

The screenshots throughout the users guide are produced on Windows 7 using the Windows Look and Feel, but

DbVisualizer lets you choose among other Look and Feels as well.

In addition to this Users Guide, the following online resources may be be useful:

The home of ,DbVisualizer (http://www.dbvis.com/)

The which is regularly updated with frequently asked FAQ (http://confluence.dbvis.com/display/FAQ)

questions and known problems,

The online page. This page gives Databases and JDBC Drivers (http://www.dbvis.com/doc/database-drivers/)

information about supported databases and JDBC drivers,

The DbVisualizer .forums (http://www.dbvis.com/forum/)

2.1 Downloading

DbVisualizer installers are available on our web site at .http://www.dbvis.com/download/

Download the installer for your operating system that fits your needs:

Without Java VM if you already have Java installed,

WIth Java VM if you do not have Java installed, or if you want to use the recommended Java version for

DbVisualizer and another Java version for other applications,

An Installer unless you must use an archive format for some reason.

2.2 Installing

There are two ways to install DbVisualizer: using an Installer or extracting files from an archive file.

Installing with an Installer (see page 14)

Installation from an archive file (see page 14)

Installation Notes for ZIP archives (Windows) (see page 14)

Installation Notes for TAR archives (Unix) (see page 14)

Installation Notes for RPM archives (Linux) (see page 14)

Installation Notes for DEB archives (Linux) (see page 14)

http://www.dbvis.com/
http://confluence.dbvis.com/display/FAQ
http://www.dbvis.com/doc/database-drivers/
http://www.dbvis.com/forum/
http://www.dbvis.com/download/

DbVisualizer 9.2 Users Guide

Page of 14 428

2.2.1 Installing with an Installer

To install DbVisualizer, just execute the Installer you have downloaded and follow the instructions in the screens

.

2.2.2 Installation from an archive file

Installation Notes for ZIP archives (Windows)
All files are contained in an enclosing folder named .DbVisualizer

Unpack the distribution file with the built-in zip archive extraction utility in Windows or with the utility.winzip

The ZIP archive installer will not add any entries to the Start menu, add desktop launchers or even register the

software in the Windows registry.

Start DbVisualizer by clicking the file in the installation directory for DbVisualizer.dbvis.exe

To uninstall DbVisualizer installed via a ZIP archive, simply delete the complete DbVisualizer directory.

Installation Notes for TAR archives (Unix)
All files are contained in an enclosing folder named .DbVisualizer

Unpack the distribution file with:

gunzip dbvis_unix_9_1.tar.gz

tar xf dbvis_unix_9_1.tar

Start DbVisualizer by executing the shell script in the installation directory, e.g. .DbVisualizer/dbvis.sh

To uninstall DbVisualizer installed via a TAR archive, simply delete the complete DbVisualizer directory.

Installation Notes for RPM archives (Linux)
Install the rpm with or your favorite rpm tool.rpm -i <download_filename>

Start DbVisualizer by executing the shell script in the installation directory, e.g. .DbVisualizer/dbvis

To uninstall DbVisualizer installed via an RPM archive, use the rpm utilities.

Installation Notes for DEB archives (Linux)
Install the package with or your favorite Debian package manager tool.sudo dpkg -i <download_filename>.deb

DbVisualizer 9.2 Users Guide

Page of 15 428

1.

2.

3.

Start DbVisualizer by executing the shell script in the installation directory, e.g. .DbVisualizer/dbvis

To uninstall DbVisualizer installed via an DEB archive, use .dpkg --remove

2.3 Starting DbVisualizer

How to start DbVisualizer depends on the operating system you are using.

Windows

In the menu, select the menu item.Start DbVisualizer

Linux/Unix

Open a shell and change directory to the DbVisualizer installation directory. Execute the programdbvis

Mac OS X

Double click on the application or the application bundle.DbVisualizer DbVisualizer.app

You can also start DbVisualizer with the bundled script files, please see the GUI Command Line Arguments (see

 page for details. For tasks that do not require a GUI, such as tasks scheduled via the operating page 408)

system's scheduling tool, you can also use the .pure command line interface (see page 311)

2.4 Evaluating the Pro Edition

The DbVisualizer Pro edition offers far more features than the Free edition. If you are using the Free edition, it is

easy to activate a Pro edition evaluation to see if suits your needs:

Open Help->Evaluate Pro Edition

Enter your email address and click Evaluate,

Click when prompted after the activation of the evaluation.Restart

If you start DbVisualizer with one of the bundled scripts rather than with the launcher, you need to

manually restart DbVisualizer after the activation.

DbVisualizer 9.2 Users Guide

Page of 16 428

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

5.

6.

2.5 Installing a Pro Edition License

To enable the Pro edition features, you need to install the License Key String or License Key File that you

received after purchasing the license.

Installing a License Key String (see page 16)

Installing a License Key File (see page 16)

Uninstalling the license key (see page 16)

2.5.1 Installing a License Key String

Select and copy the License Key String included in the email,

Start DbVisualizer and select the main menu choice,Help->License Key

Select License Key String as the ,License Type

Paste the key string into the text area,

Click ,Install License

Restart DbVisualizer when prompted to do so.

The DbVisualizer main window should now say in the window title. You're ready to go.DbVisualizer Pro

2.5.2 Installing a License Key File

Save the file attached to the email to disk,dbvis.license

Start DbVisualizer and select the main menu choice,Help->License Key

Select License Key File as the ,License Type

In the field, enter the path to the newly saved file or click the button to theLicense Key File dbvis.license

right of the field to open a file browser to locate the file,

Click ,Install License

Restart DbVisualizer when prompted to do so.

An option to saving the file to disk is to drag it from you mail application (or elsewhere) dbvis.license

into the field in the window.License Key File Help->License Key

The DbVisualizer main window should now say DbVisualizer Pro in the window title. You're ready to go.

2.5.3 Uninstalling the license key

If you ever need to uninstall the license key, you can do so by removing (or renaming) the following file:

DbVisualizer 9.2 Users Guide

Page of 17 428

1.

2.

Operating System Filename

Windows C:\Documents and Settings\<user>\.dbvis\dbvis.license

UNIX/Linux /home/<user>/.dbvis/dbvis.license

Mac OS X /Users/<user>/.dbvis/dbvis.license

2.6 Creating a Connection - basics

To access a database with DbVisualizer, you must first create and setup a Database Connection. The easiest

way to set up a connection is to use the Connection Wizard, but you can also do it manually.

Using the Connection Wizard (see page 17)

Setting Up a Connection Manually (see page 21)

2.6.1 Using the Connection Wizard

Launch the wizard from and click when promptedDatabase->Create Database Connection Use Wizard

,

Enter a name for the connection on the first Wizard page and click ,Next

DbVisualizer 9.2 Users Guide

Page of 18 428

2.

3. Select an installed JDBC driver (marked with a green checkmark) on the second wizard page (see

 for how to install a JDBC driver manually),Installing a JDBC Driver (see page 409)

DbVisualizer 9.2 Users Guide

Page of 19 428

3.

4.

The JDBC-ODBC bridge driver is not intended for production use and is known to be limited and

unreliable. Use it only if there is no pure JDBC driver for your database.

Enter information about the database server on the third wizard page (see below for details),

DbVisualizer 9.2 Users Guide

Page of 20 428

4.

5.

6.

Verify that a network connection can be established to the specified address and port by clicking the Ping

 button,Server

If Ping Server shows that the server can be reached, click the button to create the connection.Finish

See for some tips if you have problems connecting to the Fixing Connection Issues (see page 402)

database.

The information about the database server that needs to be entered depends on the which JDBC driver you use.

For most drivers, you need to specify:

Field Description

Database Server The IP address or DNS name for the server where the database runs.

DbVisualizer 9.2 Users Guide

Page of 21 428

1.

Field Description

Database Port The TCP/IP port used by the database.

Database Userid The database user account name. Enter to not send an account name.(null)

Database Password The database user account password. Enter to not send a password.(null)

For some database such as Oracle, you may use a instead of specifying the server TNS name (see page 297)

and port. Other drivers may add more fields that are driver specific.

You may also optionally specify and Options, such as:SSH tunneling information (see page 294)

Option Description

Auto Commit Check if you want to enable auto commit in the SQL Commander by default for the

connection.

Save Database

Password

Check if you want the password to be saved (encrypted) between sessions.

Connection Mode One of , or or to select which set of Development Test Production Permissions (see

 to use.page 282)

Additional options are available for some JDBC drivers, such as for the Authentication Method (see page 298)

SQL Server jTDS driver.

See the page for related topics.Configuring Connection Properties (see page 282)

2.6.2 Setting Up a Connection Manually

Create a new connection from and click when Database->Create Database Connection No Wizard

prompted. An tab for the new connection is opened,Object View

DbVisualizer 9.2 Users Guide

Page of 22 428

1.

2.

3.

4.

5.

6.

7.

Enter a name for the connection in the field,Name

Leave the as Database Type Auto Detect,

Select an installed JDBC driver (marked with a green checkmark) from the Driver (JDBC) list (see

 for how to install a JDBC driver manually),Installing a JDBC Driver (see page 409)

Enter information about the database server in the remaining fields (see below for details),

Verify that a network connection can be established to the specified address and port by clicking the Ping

 button,Server

If Ping Server shows that the server can be reached, click to actually connect to the database Connect

server.

See for some tips if you have problems connecting to the Fixing Connection Issues (see page 402)

database.

DbVisualizer 9.2 Users Guide

Page of 23 428

Alternatively, you can set the to (this is the only choice for some custom JDBCSettings Format Database URL

drivers). This replaces the fields for information about the database server with a single field, Database URL

where you can enter the JDBC URL.

The information about the database server that needs to be entered depends on the which JDBC driver you use.

For most drivers, you need to specify:

Field Description

Database Server The IP address or DNS name for the server where the database runs.

Database Port The TCP/IP port used by the database.

Database Userid The database user account name. Enter to not send an account name.(null)

Database Password The database user account password. Enter to not send a password.(null)

For some database such as Oracle, you may use a instead of specifying the server TNS name (see page 297)

and port. Other drivers may add more fields that are driver specific.

You may also optionally specify and Options, such as:SSH tunneling information (see page 294)

Option Description

Auto Commit Check if you want to enable auto commit in the SQL Commander by default for the

connection.

Save Database

Password

Check if you want the password to be saved (encrypted) between sessions.

Connection Mode One of , or or to select which set of Development Test Production Permissions (see

 to use.page 282)

Additional options are available for some JDBC drivers, such as for the Authentication Method (see page 298)

SQL Server jTDS driver.

See the page for related topics.Configuring Connection Properties (see page 282)

2.7 Creating a Table - basics

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding

SQL in the .SQL Commander (see page 155)

DbVisualizer 9.2 Users Guide

Page of 24 428

1.

2.

3.

4.

1.

2.

To create a new table:

Expand nodes in the tab tree under the connection node until you reach the node,Databases Tables

Select the node and launch the dialog from the right-click menu:Tables Create Table

Add columns and constraints in the different tabs,

Click the button to create the table.Execute

You can learn more about the Create Table dialog in the page.Creating a Table (see page 58)

2.8 Viewing a Table - basics

To view details about a database table:

Expand nodes in the tab tree under the connection node until you find the table,Databases

Double-click on the table node to open its tab.Object View

DbVisualizer 9.2 Users Guide

Page of 25 428

2.

The Object View has a number of sub tabs. Exactly which sub tabs are available depends on the database type,

but these are common:

Subtab Description

Info Brief information about the table.

Columns Information about all table columns, e.g. data types and sizes.

Data Then table data. Here you can and the data.view (see page 80) edit (see page 92)

Row Count The number of rows in the table.

Primary

Keys

Information about the table's primary key columns, if any.

Indexes Information about the table's indexes, if any.

Grants Information about granted privileges for the table.

DDL Shows the CREATE statement for the table.

References Shows declared primary/foreign key relationships to other tables. Please read more in Viewing

.Table Relationships (see page 122)

Navigator Navigate through the declared relationships. Please read more in Navigating Table

.Relationships (see page 123)

DbVisualizer 9.2 Users Guide

Page of 26 428

1.

2.

3.

4.

5.

2.9 Editing a Table - basics

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding

SQL in the .SQL Commander (see page 155)

To edit table data:

Expand nodes in the tab tree under the connection node until you find the table,Databases

Double-click on the table node to open its tab,Object View

Open the sub tabData

Edit column values directly in the grid, add and remove rows by clicking on the buttons in the toolbar,

Save the edited data by clicking on the button in the toolbar.Save

Note that if the table does not have any declared Primary Key, you will be prompted to select the

column(s) that uniquely identify a row.

You can learn more about the editing features in .Editing Table Data (see page 92)

DbVisualizer 9.2 Users Guide

Page of 27 428

1.

2.

3.

4.

5.

2.10 Executing SQL - basics

To execute SQL statements:

Open an SQL Commander window from or by clicking the SQL Commander->New SQL Commander

 button in the main toolbar,New SQL Commander

Select the database connection, catalog and schema to use,

Enter the SQL statements in the editor area,

Execute the statements by clicking the button in the toolbar or choosing Execute SQL Commander->

Execute,

The execution log and possible result sets are shown as tabs in the results area below the editor.

You can learn more about editing, saving and executing SQL statements in the Working with SQL (see page

 section.155)

2.11 Checking for Updates

By default, DbVisualizer checks for new versions on a weekly basis. To change the interval or manually check

for updates:

DbVisualizer 9.2 Users Guide

Page of 28 428

1.

2.

Open ,Help->Check for Updates

Change the interval to one of , , , or , or click the Every Start-Up Daily Weekly Monthly Never Check Now

button to see if there is a new versions available right now.

If you are interested in getting information about versions to help us fine tune upcoming versions, Beta

check the corresponding checkbox. By default, Beta versions are not considered when checking for

updates (unless you are already running a Beta version).

If a newer version is available, a dialog is displayed from where you can install the new version, read release

notes, or in case your license is not valid for the new version, open our purchase page in your web browser.

Upgrading the currently used version is done by clicking the link in the above dialog and then follow Upgrade

the instructions.

DbVisualizer 9.2 Users Guide

Page of 29 428

In some organizations, decisions about about software versions and installation is handled as a

centralized process and individual users not allowed to upgrade or install software. The Check for

Update feature and auto-update of new versions can be disabled by adding the following row in the

:DBVIS-HOME/resources/dbvis-custom.prefs

dbvis.url.checkforupdate=

With this setting, no entry for Check for Update will appear in the menu.Help

2.12 Printing

DbVisualizer supports printing of grids, graphs, charts and plain text, such as the content of an SQL Editor. The

print dialog looks somewhat different depending on what is printed. In all cases, you launch the print dialog by

clicking on the button in the toolbar for the object you want to print, or by choosing from the Print Print

right-click menu. The right-click menu also contains a choice, if you want to see what the printout Print Preview

will look like before you actually print.

Printer Setup (see page 30)

Printing a Grid, a Chart and Plain Text (see page 30)

Printing a Graph (see page 30)

Print Preview (see page 30)

DbVisualizer 9.2 Users Guide

Page of 30 428

2.12.1 Printer Setup

If you want to set the page orientation (e.g., portrait or landscape) and paper size, you must launch the Printer

Setup dialog, using the main menu option, before you print. Printing varies widely between File->Printer Setup

platforms, so even though the Print dialog (as opposed to the Printer Setup dialog) on some platforms also lets

you choose a page orientation and other options, they may be ignored if specified in that dialog. The only

supported way to specify the page orientation and other options is via the Printer Setup dialog.

2.12.2 Printing a Grid, a Chart and Plain Text

For a grid, chart and plain text, DbVisualizer launches the platform's native Print dialog, so it looks different on

different platforms. The two options available on all platforms are a choice of printer and the page range. On

some platforms, the dialog may offer additional options, but they may be ignored by DbVisualizer. Use the

Printer Setup dialog to set other options besides which printer to use and the page range, as described above

When you print a grid in DbVisualizer, the grid is printed as it is shown on the screen, i.e., with the table headers

, sort and primary key indicator, etc. It is printed as a screenshot that may span several pages, depending on the

number of rows and columns that are printed. For a grid, the right-click menu contains a choice Print Selection

that you can use if you just want to print selected rows and columns.

An alternative to printing a grid as a screenshot is to export the grid to HTML and then use a web

browser to print it.

Printing a chart scales the chart to the size of the paper. Plain text is printed as-is and may span multiple pages,

both in height and width.

2.12.3 Printing a Graph

Printing a graph adds a custom dialog before the native Print dialog is displayed. You can specify the number of

rows (pages) and columns (pages) that the complete image will be split into. You can also select whether the

view as it appears on the screen or the complete graph should be printed. When you click Ok, the native Print

dialog is displayed, where you can select the printer.

2.12.4 Print Preview

Use the feature to preview what the printout will look like before you actually print it.File->Print Preview

DbVisualizer 9.2 Users Guide

Page of 31 428

Grid Graph

DbVisualizer 9.2 Users Guide

Page of 32 428

3 Getting the Most Out of the GUI
DbVisualizer has a tab-based user interface that gives you a lot of control over the layout and how to work with

your database objects. This section describes how you can open as many tabs as you need, arrange them to

focus on what is important to you, and more.

3.1 Main Window Layout

The DbVisualizer GUI main window contains a navigation area to the left and an area for working with database

objects and scripts to the right.

At the top of the window, you find the main menus and a toolbar.

Tooltips are used to provide more details about a component throughout the GUI. They are also used to express

status information. An example is the grid column header tooltip that shows information about the column. To

see a tooltip, let the mouse hover over an area of the user interface, e.g., a button or grid header. If there is a

tooltip for the area, it will pop up in about a second.

DbVisualizer 9.2 Users Guide

Page of 33 428

3.2 Tab Types

There are three main types of tabs in DbVisualizer:

Navigation Tabs (see page 33)

Object View Tabs (see page 34)

SQL Commander Tabs (see page 35)

3.2.1 Navigation Tabs

The left part of the DbVisualizer window holds a navigation area with three tabs: , and Databases Scripts

. They all contain an object tree where you can select the objects you want to work with.Favorites

The tab tree contains you database connections at the top and, when connected, the database Databases

objects they contain. If you have many database connections, you can also create folder objects in this tree to

organize them.

The tab tree contains Bookmarks and Monitors, see the Scripts Managing Frequently Used SQL (see page 185

 and the pages for details.) Monitoring Data Changes (see page 264)

Finally, the tab tree contains objects that you want to have easy access to, either database objects (Favorites

such as tables, views, or procedures) or scripts. You can read more about Favorites in the Favorites (see page

 page.272)

DbVisualizer 9.2 Users Guide

Page of 34 428

3.2.2 Object View Tabs

An tab shows information about a database object, such as the data and DDL for a table, or the Object View

source code for a stored procedure. The different types of information are shown as sub tabs within the Object

View tab.

DbVisualizer 9.2 Users Guide

Page of 35 428

3.2.3 SQL Commander Tabs

An SQL Commander tab contains an editor for editing SQL scripts, controls for executing the script and a results

area with a tab and possibly tabs and a tab.Log Result Set DMBS Output

DbVisualizer 9.2 Users Guide

Page of 36 428

3.3 Opening a Tab

You can open an object by double-clicking on the object node, or by pressing with the node selected, in Enter

all navigation tab trees. This opens either an Object View tab or an SQL Commander tab, depending on the

object type: database object or script.

By default, a database object is opened in an Object View tab that is "available," meaning it is not pinned, busy

running a task, or contains pending edits. The current tab is choosen if it is available, otherwise any other

available tab is used. If none of the tabs is available, a new tab is created for the object. You can change this

behavior in the General/Tabs category in Tools->Tool Properties, so that a new tab is always used instead of

using an available tab.

If a tab is already open for the object, it is made the active tab. An alternative to double-clicking a database

object is to use the choice from the node's right-click menu. is also available in the Open in Tab Open in Tab

 drop-down menu button in the tab toolbar.Open Object Databases

If you want to open a database object in a new tab instead of an available tab, hold down the key when you Alt

double-click the node, use the choice from the node's right-click menu or from the Open in New Tab Open

 drop-down menu button in the tab toolbar. The drop-down button keeps the last choice as Object Databases

the default, so once you have choosed once, you only need to click the button to do the Open in New Tab

same.

DbVisualizer 9.2 Users Guide

Page of 37 428

Both and can also be used when multiple nodes are selected in the tree to Open in Tab Open in New Tab

open multiple tabs in one go.

To replace the content in a specific tab with information for another object, drag the node for the Object View

new object from the object tree and drop it on the tab header.Object View

Scripts (Bookmarks and Monitors) are always opened in a new tab unless the script is SQL Commander

already opened in a tab. If so, that tab is activated instead. An alternative to double-clicking the node is to use

 in the right-click menu or the corresponding button in the tab toolbar. The Open in SQL Commander Scripts

righ-click menu also holds an choice.Open in SQL Commander and Execute

A new, empty tab is created by clicking the button in the main SQL Commander Create SQL Commander

toolbar or using the corresponding menu item. You can use this kind of tab for ad-hoc File SQL Commander

statement execution or to create a new script.

SQL Commander tabs can also be opened for files in the file system. Click the button in the main Open File

toolbar or choose to open the file chooser window and select one of more files. Alternatively, you File->Open

can drag files from your platform's file browser and drop them in the main toolbar area.

Only in DbVisualizer Pro

Multiple SQL Commander tabs are only available in the DbVisualizer Pro edition.

3.4 Pinning a Tab

To prevent an tab to be reused for another object or to prevent any tab to be removed unless you Object View

explicitly asks for it, you can "pin" it. In the right-click menu for a tab you find a Pin Tab toggle to accomplish this

.

You can also click on the icon in the tab header as a shortcut for toggling between the "pinned" and "unpinned"

states.

3.5 Closing a Tab

A top level tab and a Result Set tab in an tab can be closed by clicking the cross to the right SQL Commander

of the tab label, or clicking the tab header with the middle mouse button.

If you want to close a number of tabs at the same time, you can use the tab header menu choices:

Close Tab Close just the current tab.

Close all tabs except the current tab.

DbVisualizer 9.2 Users Guide

Page of 38 428

Close Other

Tabs

Close

Closeable

Tabs

Close all tabs that are in a state where they can be closed with no action required by the

user, e.g. not pinned and no pending edits.

Close All

Pinned Tabs

Close all pinned tabs.

Close All Tabs Close all tabs, regardless of state

You can also Object View sub tabs that you are not interested in. Use the right-click menu hide Close Tab

choice to do so. To see the hidden tabs again, use in the right-click menu.Restore Hidden Tabs

3.6 Listing Open Tabs

If you have many tabs opened, there may not be room enough to show them all at the same time. In this case,

you can scroll through them using the arrow buttons that appear to the right of the tabs. It is, however, often

faster to locate the tab you want to work with by clicking the list icon next to the arrow buttons. This brings up a

list of all open tabs so you can select the one you want directly.

3.7 Maximizing and Minimizing a Tab

The three Navigation tabs can be minimized either by double-clicking on the tab header or using Minimize Tab

in the tab's right-click menu. Clicking on a minimized tab brings it back to its regular place and size again.

All other tabs can be maximized by double-clicking on the tab header or using in the tab's Maximize Tab

right-click menu. When you maximize a tab, the Navigation tabs are minimized to make as much room as

possible available and the tab you maximized fills all available space. Double-clicking on the the tab again

restores all tabs back to their original size.

DbVisualizer 9.2 Users Guide

Page of 39 428

An icon in the main status bar indicates when a tab is maximized. An alternative for restoring the original size of

all tabs is to double-click on this icon.

3.8 Floating a Tab

Sometimes it is handy to break up the user interface in multiple freestanding windows. Every tab in DbVisualizer

can be placed in a separate window by "floating" the tab. Use the menu choice in the tab header Floating

right-click menu to float the tab in a separate window.

When you close a floating tab, a dialog is displayed where you can choose to really close the tab or restore it

back into the main window.

3.9 Rearranging Tabs

You can move the tabs around by drag and drop. This allows you to see the content of multiple tabs at the same

time

DbVisualizer 9.2 Users Guide

Page of 40 428

When you drag a tab, and outline of the tab borders shows what will happen when you drop it: place it in above,

below or next to another tab, or simply move it to another location among its siblings.

The tab header right-click menu also has a couple of choices for arranging all tabs at the same level as either "

tiled" (the content of all tabs visible side-by-side) or "collapsed" (only the content of the active tab visible).

DbVisualizer 9.2 Users Guide

Page of 41 428

You can save your rearranged layout of an Object View tab so that it is applied for all objects of the the same

type for the same database type. In the sub tab header right-click menu, just select . ToSave as Default Layout

restore the default layout, use .Reset to Factory Layout

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

3.10 Changing the Tab Label

The tab labels are set based on a pattern that you can change in , in the Tools->Tool Properties Appearance/

 category.Tabs

You can select one of the predefined patterns or create your own by editing the pattern. The variables available

for these patterns are:

DbVisualizer 9.2 Users Guide

Page of 42 428

Variable Available For Description

${connectionname

}

All Connection name

${filename} SQL Commander

Tabs

Script filename, or "Untitled" if no file is loaded

${index} All A unique index

${longfilename} SQL Commander

Tabs

Absolute path for the script, or "Untitled" if no file is loaded

${objectname} Object View Tabs Object name

${objecttype} Object View Tabs Object type, e.g. Table, View etc.

${catalog} Object View Tabs The database (if any) for the currently open object

${schema} Object View Tabs The schema (if any) for the currently open object

${rows} Result Set Tabs Number of rows in the result set

${sql} Result Set Tabs Part of the SQL statement that produced the result set

${table} Result Set Tabs Name of the table (first if more than one) the result set comes

from

${time} Result Set Tabs Time when the result set was produced

${userid} All Userid used for the connection

${vendor} Result Set Tabs Database vendor name

You can also manually change the label for Object View, SQL Commander and Result Set tabs, using the

 menu choice in the tab right-click menu.Rename

3.11 Selecting a Node for a Tab

To quickly navigate to and select the node in the tab tree that an tab belongs to, you Databases Object View

can click on the object path in the Object View header area. Alternatively, you can use Select in Databases

 in the tab right-click menu.Tab

Similarly, you can navigate to the object represented by a Favorite object using its Select Target Object

right-click menu choice. It selects the object in the or tab, depending on the Favorite type.Databases Scripts

DbVisualizer 9.2 Users Guide

Page of 43 428

1.

2.

3.

4.

For an tab that is associated with a connection, you can use in the SQL Commander Select in Databases Tab

tab right-click menu to select the connection node.

3.12 Preserving Tabs Between Sessions

If you often work with the same objects and a few scripts, you can ensure that the Object View and SQL

Commander tabs for these objects remain open between DbVisualizer sessions.

Open ,Tools->Tool Properties

Select the category,Appearance/Tabs

Enable one or both of and Preserve SQL Commander tabs between Sessions Preserve Object View

,tabs between Sessions

Click or to apply the new settings.Apply OK

This feature is enabled by default for SQL Commander tabs but not for Object View tabs.

The content of the SQL Commander tabs is saved at regular intervals so when you restart DbVisualizer, the

content is the same as where you left off.

For Object View tabs, you can also enable . By default, Object View Preserve Object View tabs at Disconnect

tabs for objects that belong to a connection are closed when it is disconnected.

3.13 Using Tab Colors and Borders

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

If you like to distinguish tabs and other GUI components for a specific connection from those of others, you can

specify a tab background color and/or border to use for a connection. If you set these in the Tool Properties

window, they apply to all connections with the corresponding database type. Therefore these properties are

typically set in the tab for a specific connection instead.Properties

For the border, you can either select one of the predefined styles or specify a small image file to use for the

border.

The selected color and border are also shown in the connection tab node in the Databases tab and in the

Database Connection list in the SQL Commander.

DbVisualizer 9.2 Users Guide

Page of 44 428

1.

2.

3.14 Changing the GUI Apperance

To change how the DbVisualizer GUI is displayed:

Open ,Tools->Tool Properties

Select the category under the tab.Appearance General

Here you can select a different Look and Feel and adjust the size and use of icons.

In the subcategories and you can adjust the fonts used for different parts of the GUI and the Fonts Colors

colors used to highlight grid elements.

The main menu also contains a number of toggle controls for showing or hiding GUI elements, such as View

toolbars and status bars.

3.15 Changing Keyboard Shortcuts

You can define key bindings for almost all operations and editor commands in DbVisualizer. Key bindings are

grouped in . DbVisualizer includes a set of predefined key maps targeted for the supported operating Key Maps

DbVisualizer 9.2 Users Guide

Page of 45 428

systems. These key maps cannot be deleted or modified. To customize key bindings, copy an existing key map

and make your changes.

All user defined key maps are stored in your directory. A key map file contain $HOME/.dbvis/config70/keymaps

only the differences between the copied key map and the current.

To create a new key map, select the map you want to copy and click the button. Set a name on the Make Copy

new key map and activate it with the button. The newly created key map now has the exact same Set Active

key bindings as the parent key map.

DbVisualizer 9.2 Users Guide

Page of 46 428

The action list is organized in folders. The folder lists all actions available in the SQL Editor Commands

Commander editor and their current key bindings. The folder contains subfolders, each representingMain Menu

a main window menu. The other folders group feature specific actions, such as actions to control the references

graph, form editor, etc.

To modify the key bindings for an action, select the action from the action list. The current key bindings are listed

in the list.Key Bindings

The keystroke dialog controls whether a key binding is already assigned somewhere else. If there is a conflict

with another binding, the area shows the names of the actions that are conflicting. The modifier keys Conflicts

Shift, Alt, Ctrl and Command can be used to form the final key binding.

Menu items and tooltips shows the first defined key binding in the list.

DbVisualizer 9.2 Users Guide

Page of 47 428

4 Managing Database Objects

4.1 Opening a Database Object

To open an Object View tab with the details for a database connection or for a specific database object, the

simplest way is to double-click the object node in the Databases tab. For more information about tabs check the

 section.Opening a Tab (see page 36)

4.2 Perform Actions on Multiple Database Objects

The actions menu for a database object in the Databases tab consists of actions that are available for the

selected object type. Some of the operations are common for any currently selected object while others are only

available for the current object. Sometimes it is convenient to run a single action on multiple nodes at once. To

do this, select the nodes (make sure all are of the same object type) and then right-click in the object list. The

menu will now highlight those actions that are valid to use.

DbVisualizer 9.2 Users Guide

Page of 48 428

Choosing for example the action shows the following window in which the drop can then be Drop Table

performed on multiple tables.

DbVisualizer 9.2 Users Guide

Page of 49 428

1.

2.

4.3 Filtering Database Objects

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Object Filtering (see page 51)

Inline Objects Filtering (see page 52)

Object Type Visibility (see page 53)

Temporarily Disable Filtering (see page 55)

Filter Sets (see page 56)

Switching Filter Set (see page 57)

Show Only Default Database/Schema filter (see page 57)

Managing what database objects are listed in the tab is done at two levels:Databases

Objects Filtering

Defines what individual object nodes are listed for a specific object type. This allows filtering on for

example Table objects so that only tables matching a condition are listed.

Object Type Visibility

Defines what object types such as views, tables, indexes, procedures, etc. are listed. Every database in

DbVisualizer supports all sorts of database objects. Having the ability to hide some object types makes it

easier to locate the database objects that are of primary interest.

DbVisualizer 9.2 Users Guide

Page of 50 428

The is used to manage both object type visibility and object filters. The Filter Editor is opened from Filter Editor

one of:

Database main menu and the Database Objects Filters->Open Filter Editor

Right-click in the and chose Databases tab Database Objects Filters->Open Filter Editor

Click the drop-down button on the funnel icon in the toolbar and chose Databases tab Open Filter

.Editor

Managing filters and opening the filter editor requires that a node is selected in the Databases tab tree

and that the related database connection is connected.

DbVisualizer 9.2 Users Guide

Page of 51 428

The upper list shows all available object types for the actual database connection. The leading check mark

controls whether the object type should be visible in the Databases tab. Read more in the Object Type Visibility (

 section. The column shows any filters defined for each object type. A see page) Filter(s) green symbol

indicate that at least one filter is active while a indicate that filters are defined but all are yellow symbol

deactivated.

Selecting an object type enables the objects filtering area in the lower part of the window. Here individual filters

are defined for an object type.

4.3.1 Object Filtering

Object filtering can be made on any database object () except for grouping Table, Function, Procedure, User

objects such as . Grouping objects in DbVisualizer are often labeled Tables, Functions, Procedures, Users

with the related object type name in plural. To setup a filter, select the object type in the objects list and in the

filter area, click the button with a plus sign to insert a new row.

A filter entry consists of a field (e.g a condition and a value to match against. Click the field to Label), condition

select the condition to use. In the field, enter the value that should be matched. For multi value conditionsValue

, such as and the list of values are separated with a semicolon or edited in separate window.is in isn't in,

Each individual filter can be deactivated using the . Uncheck it and the corresponding filter will not check mark

be used unless reactivated. The currently defined filters are listed in the upper object type list for each object

type. The leading symbol shows either a green check mark which indicates that some of its filters are active or a

yellow symbol that shows that no filter is active.

You can define more than one filter. Just click the plus or double plus (to duplicate an existing row) buttons. If

you have more than one active filter, you must also select if the filter should match or filter entries.Any All

DbVisualizer 9.2 Users Guide

Page of 52 428

Inline Objects Filtering
The filter area can also be displayed just below the objects tree in the Databases tab. This is convenient as you

can then quickly manage and verify the effect of certain filters. To toggle the display of the filtering area, either

click the left part of the funnel icon in the tab toolbar or right-click and select Databases Database Objects

.Filter->Show/Hide Filter Area

Managing filters and opening the filter editor requires that a node is selected in the Databases tab tree

and that the related database connection is connected.

In this example, the filter area is displayed with the filters for the object type listed. When filters have Schema

been modified, you need to manually apply the filters using one of the in the filter area toolbar orreload buttons

in the Databases tab toolbar. If a filter results in all object nodes being filtered, " " is displayed next (all filtered)

to the parent object node in the tree. Since the filtered object type is now invisible as a result of the current filter,

you need to disable the filter to refine it. Do this by selecting the parent node with the " " label and (all filtered)

then click the " " link just below the objects tree:Disable Filters

DbVisualizer 9.2 Users Guide

Page of 53 428

Clicking " deactivates all filters for the object type and you are now able to modify the filter to getDisable Filters "

the matches you want.

4.3.2 Object Type Visibility

Object type visibility is the functionality used to define what object types in the Databases tab should be visible.

For some databases the tree of object types can be really long and many objects are rarely used or of any

interest. By hiding object types, the tree is compressed to only show what you are really interested in. To control

the visibility of object types, open the .Filter Editor

DbVisualizer 9.2 Users Guide

Page of 54 428

The previous image shows the object types available under a in Oracle. As you can see, there are Schema

plenty of them. (Their sub object types are collapsed in the example for better illustration). The following

example shows the database tree in the Databases tab before and after the visibility has been set based on the

previous screenshot.

DbVisualizer 9.2 Users Guide

Page of 55 428

All Schema objects displayed With hidden Schema objects

4.3.3 Temporarily Disable Filtering

While browsing the objects in the Databases tab, it may be convenient to quickly toggle between the standard

non filtered view and the filtered view of objects and types. This is easily accomplished with the Disable

 action in the funnel drop-down menu. While filtering is disabled, the funnel symbol in the toolbar showsFiltering

a red indicator and text in the inline filtering area shows the current status.

DbVisualizer 9.2 Users Guide

Page of 56 428

While filtering is disabled it is not possible to manage filters at all and the related actions are disabled.

Disabling filters is applied per database connection. This means that if you disable the current filter set

on a MySQL connection it wont affect any other database connections.

4.3.4 Filter Sets

When you apply an object filter or hide an object type, that configuration is saved in a that is saved Filter Set

between sessions. For every database connection, there is always a . If you are happy with the default filter set

basic filtering capability you can stop reading here. If you however are interested in having multiple filter sets

that can optionally be shared between multiple database connections and easily be switched between, keep on

reading.

Filter sets are managed in the filter editor. Here you can create and delete filter sets and merge from another.

Filter sets are either associated with a specific database connection, its name is then default for <database

 or a custom filter set that can be enabled for many connections, named as you like. A connection name>

custom filter set is always associated with the database type currently being used for your database connection.

DbVisualizer 9.2 Users Guide

Page of 57 428

The latter means that you are able to share filters sets that are all associated with the same database type. If

you create a filter set for MySQL then this will never show if you are working with an Oracle database.

The Filter Set drop-down in the filter editor shows the currently used filter set, and when clicked, the available

filter sets that you may switch to.

The merge functionality can merge not only from custom filter sets but also from the default filter sets associated

with other database connections with the same database type.

Switching Filter Set
In the filter editor, you switch filter set by selecting one from the Filter Set drop-down. In the Databases tab,

there is the funnel symbol which when clicked is used to toggle the display of the inline filter area. Clicking on

the funnel drop-down symbol opens a menu:

At the top of the menu, the default filter set for the database connection is displayed first with any custom filter

sets below it. An entry that is check marked indicates that it is active.

4.3.5 Show Only Default Database/Schema filter

There is a special filter used to filter any database and schema objects to show only the default for the session.

It is listed as Show Only Default Database/Schema in the filter menu. When selected, a special filter is applied

on the corresponding Database and/or Schema object type and the effect is what its name implies.

DbVisualizer 9.2 Users Guide

Page of 58 428

1.

2.

5 Working with Tables
DbVisualizer provides many ways to work with tables.

5.1 Creating a Table

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding

SQL in the .SQL Commander (see page 155)

The Create Table dialog helps you create a table without writing SQL.

Opening the Create Table Dialog (see page 58)

Columns Tab (see page 60)

Primary Key Tab (see page 62)

Foreign Keys Tab (see page 62)

Unique Constraints Tab (see page 64)

Check Constraints Tab (see page 65)

Indexes Tab (see page 65)

SQL Preview (see page 66)

Execute (see page 67)

5.1.1 Opening the Create Table Dialog

To create a new table:

Expand nodes in the tree under the connection node in the tab tree until you reach the Databases

 node,Tables

Select the node and open the dialog from the right-click menu.Tables Create Table

DbVisualizer 9.2 Users Guide

Page of 59 428

The dialog is organized in three areas from the top:Create Table

General Table Info

Specifies the owning database connection, database and/or schema. These are picked up from the

selection in the tree when the dialog is opened. Table name is set to a default name that you should

change to the real table name.

Table Details

A number of tabs where you specify information about the columns and, optionally, various constraints.

The , and tabs are available for all databases. The remaining tabs Columns Primary Key Foreign Key

are database-specific and depends on the features supported by the database engine.

SQL Preview

The SQL previewer shows the SQL statement for creating the table based on your input.

DbVisualizer 9.2 Users Guide

Page of 60 428

1.

2.

3.

4.

5.1.2 Columns Tab

The tab lists all table columns along with their attributes.Columns

To add a column:

Click the button,Add

Enter the name of the column in the first field and select a data type from a drop down list in the second

field, or start typing the data type name to find it and select it with the key. The list contains the Enter

names of all data types the database supports,

For some data types, such as character types, you may also specify a size, i.e., the maximal length of the

value. For others, like the decimal types, you can may specify both a size and a scale (the maximal

number of decimals),

In the last two fields, specify if the table is nullable and a default value to use for rows inserted into the

table without specifying a value for the column.

Below the column list, you may find additional fields depending on the features supported by the database you

create the table for and the data type for the current column. The field is shown for character columns Collation

if the database supports the declaration of a collation for textual data.

DbVisualizer 9.2 Users Guide

Page of 61 428

1.

The field, and possibly and fields, are shown for numeric fields if the Auto Increment Start With Increment By

database supports automatically inserting the next available sequence number in a numeric column.

The dialog uses database metadata to try to enable only the fields that apply to the selected data Create Table

type, but please note that it is not always possible. For instance, there is no metadata available to tell if a data

type requires, or allows, a size. If you don't enter a required attribute or enter an attribute that is unsupported for

a data type, you will get an error message when you click to create the table.Execute

To remove a column:

DbVisualizer 9.2 Users Guide

Page of 62 428

1.

2.

1.

2.

1.

2.

Select a cell in the column row,

Click the button.Remove

To move a column to another location:

Select a cell in the column row,

Click the or buttons.Up Down

5.1.3 Primary Key Tab

The tab contains information about an optional primary key for the table. A primary key is a columnPrimary Key

, or a combination of columns, that uniquely identifies a row in a table.

To declare a Primary Key:

Optionally enter a constraint name for the primary key constraint in the field,Constraint Name

Select the columns to be part of the primary key by clicking the checkboxes in the field in the Include

columns list.

5.1.4 Foreign Keys Tab

In the tab, you can declare one or more foreign keys for the table. A foreign key is a column, or a Foreign Keys

combination of columns, that refer to the primary key of another table. Foreign keys are used by the database to

DbVisualizer 9.2 Users Guide

Page of 63 428

1.

2.

3.

4.

5.

1.

enforce integrity, i.e., that there is a row in the referenced table with a primary key that matches the foreign key

value when a new row is inserted or updated, and you can optionally declare rules for what to do when a

referenced primary key is removed or updated in the referenced table.

The tab has the following sections:

A list of foreign keys,

Controls for selecting the table the currently selected foreign key refers to, including the database (

catalog) and/or schema for the table,

A list of all columns for the table being created.

To declare a new foreign key constraint:

Click the button next to the list of foreign keys,Add

Optionally enter a name for the foreign key in the first field in the list,

Select and actions from the pull-down menus. The pull-down lists include all On Delete On Update

actions that the database support, typically CASCADE, RESTRICT, NO ACTION and SET NULL. The

 field is read-only and gets its value automatically when you select which columns to include in Columns

the key later,

Use the controls to select the table that the foreign key refers to,Referenced Table

Check the checkbox for all columns in the column list that should be part of the foreign key and Include

then select the corresponding column in the referenced table from the pull-down menu in the Referenced

 field.Column

You can change the column order for the key with the and buttons.Up Down

To remove an existing foreign key:

DbVisualizer 9.2 Users Guide

Page of 64 428

1.

2.

1.

2.

3.

1.

2.

Select the foreign key in the list in the top section,

Click the button.Remove

5.1.5 Unique Constraints Tab

The tab is only available for databases that support this constraint type. A unique Unique Constraints

constraint declares that the columns in the constraint must have unique values in the table.

The top portion of the tab holds a list of all unique constraints, and the lower portion holds a list of all table

columns.

To create a constraint:

Click the button,Add

Optionally enter a constraint name in the field. The field in the constraints listConstraint Name Columns

is read-only, filled automatically as you include columns in the constraint,

Select the columns to be part of the constraint by clicking the checkboxes in the Include field in the

columns list.

You can change the column order for the constraint with the and buttons.Up Down

To remove an existing constraint:

Select the constraint in the list in the top section,

Click the button.Remove

DbVisualizer 9.2 Users Guide

Page of 65 428

1.

2.

3.

1.

2.

5.1.6 Check Constraints Tab

The tab is only available for databases that support this constraint type. A check constraint Check Constraints

declares that a column value fulfills a certain condition when a row is inserted or updated. Some databases uses

check constraints to enforce nullability rules, so when you alter a table, you may see auto-generated check

constraints for columns that you marked as not allowing null values in the tab.Columns

To create a check constraint:

Click the button,Add

Optionally enter a constraint name in the field.Constraint Name

Enter the condition for the column in the field. You can use the same type of conditions as youCondition

use in a SELECT WHERE clause.

To remove an existing constraint:

Select the constraint in the list,

Click the button.Remove

5.1.7 Indexes Tab

The tab is only used for the MySQL database, as a replacement for the tab. The Indexes Unique Constraints

reason is that for MySQL, the CREATE TABLE statement can be used to declare both unique and non-unique

indexes. MySQL also does not make a clear distinction between a unique constraint (a rule, most often enforced

and implemented as an index by the database) and a unique index (primarily a database structure for speeding

up queries, with the side-effect of ensuring unique column values), as most other databases do.

DbVisualizer 9.2 Users Guide

Page of 66 428

1.

2.

3.

4.

1.

2.

The top portion of the tab holds a list of all indexes, and the lower portion holds a list of all table columns.

To create an index:

Click the button,Add

Optionally enter a name in the field. The field in the constraints list is Constraint Name Columns

read-only, filled automatically as you include columns in the constraint,

If you want the index columns to have unique values for all rows in the table, click the checkbox in the

 field,Unique

Select the columns to be part of the index by clicking the checkboxes in the field in the columns Include

list.

You can change the column order for the index with the and buttons.To remove an existing index:Up Down

Select the index in the list in the top section,

Click the button.Remove

5.1.8 SQL Preview

The area is updated automatically to match the edits made in the assistant. The preview is read SQL Preview

only, but you can copy the SQL to the SQL Commander and flip between formatted and unformatted views

using the corresponding choices in the preview area right-click menu.

DbVisualizer 9.2 Users Guide

Page of 67 428

1.

2.

5.1.9 Execute

When you are satisfied with the table declaration, click the button to create it.Execute

5.2 Altering a Table

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding

SQL in the .SQL Commander (see page 155)

The Alter Table dialog helps you alter a table without writing SQL.

Opening the Alter Table Dialog (see page 67)

Columns Tab (see page 69)

Primary Key Tab (see page 71)

Foreign Keys Tab (see page 72)

Unique Constraints Tab (see page 73)

Check Constraints Tab (see page 74)

Indexes Tab (see page 75)

SQL Preview (see page 76)

Execute (see page 76)

5.2.1 Opening the Alter Table Dialog

To create a new table:

Locate the table node in the tab tree,Databases

Select the table node and open the dialog from the right-click menu. Alter Table

DbVisualizer 9.2 Users Guide

Page of 68 428

The dialog is organized in three areas from the top:Alter Table

General Table Info

Specifies the owning database connection, database and/or schema, and table name. These are picked

up from the selection in the tree when the assistant is started.

Table Details

A number of tabs where you specify information about the columns and, optionally, various constraints.

The , and tabs are available for all databases. The remaining tabs Columns Primary Key Foreign Key

are database-specific and depends on the features supported by the database engine.

SQL Preview

The SQL previewer shows the SQL statements for altering the table based on your input.

DbVisualizer 9.2 Users Guide

Page of 69 428

1.

2.

3.

4.

The controls, such as the fields, pull-down menus and buttons, in the assistant are only enabled if the

ALTER TABLE statement for the database holding the table provides a way to alter the corresponding

table attribute. For instance, for a database that only allows the size of a VARCHAR column to be

altered, the field in the tab is disabled for all columns with other data types. If you find Size Columns

that you can not make the change you want, it is because the ALTER TABLE statement does not allow

that change to be made.

5.2.2 Columns Tab

The tab lists all table columns along with their attributes.Columns

To add a column:

Click the button,Add

Enter the name of the column in the first field and select a data type from a drop down list in the second

field, or start typing the data type name to find it and select it with the key. The list contains the Enter

names of all data types the database supports,

For some data types, such as character types, you may also specify a size, i.e., the maximal length of the

value. For others, like the decimal types, you can may specify both a size and a scale (the maximal

number of decimals),

In the last two fields, specify if the table is nullable and a default value to use for rows inserted into the

table without specifying a value for the column.

DbVisualizer 9.2 Users Guide

Page of 70 428

Below the column list, you may find additional fields depending on the features supported by the database you

create the table for and the data type for the current column. The field is shown for character columns Collation

if the database supports the declaration of a collation for textual data.

The field, and possibly and fields, are shown for numeric fields if the Auto Increment Start With Increment By

database supports automatically inserting the next available sequence number in a numeric column.

DbVisualizer 9.2 Users Guide

Page of 71 428

1.

2.

1.

2.

1.

2.

The dialog uses database metadata to try to enable only the fields that apply to the selected data Create Table

type, but please note that it is not always possible. For instance, there is no metadata available to tell if a data

type requires, or allows, a size. If you don't enter a required attribute or enter an attribute that is unsupported for

a data type, you will get an error message when you click to create the table.Execute

To remove a column:

Select a cell in the column row,

Click the button.Remove

To move a column to another location:

Select a cell in the column row,

Click the or buttons.Up Down

5.2.3 Primary Key Tab

The tab contains information about an optional primary key for the table. A primary key is a columnPrimary Key

, or a combination of columns, that uniquely identifies a row in a table.

To declare a Primary Key:

Optionally enter a constraint name for the primary key constraint in the field,Constraint Name

Select the columns to be part of the primary key by clicking the checkboxes in the field in the Include

columns list.

DbVisualizer 9.2 Users Guide

Page of 72 428

1.

2.

3.

4.

5.

5.2.4 Foreign Keys Tab

In the tab, you can declare one or more foreign keys for the table. A foreign key is a column, or a Foreign Keys

combination of columns, that refer to the primary key of another table. Foreign keys are used by the database to

enforce integrity, i.e., that there is a row in the referenced table with a primary key that matches the foreign key

value when a new row is inserted or updated, and you can optionally declare rules for what to do when a

referenced primary key is removed or updated in the referenced table.

The tab has the following sections:

A list of foreign keys,

Controls for selecting the table the currently selected foreign key refers to, including the database (

catalog) and/or schema for the table,

A list of all columns for the table being created.

To declare a new foreign key constraint:

Click the button next to the list of foreign keys,Add

Optionally enter a name for the foreign key in the first field in the list,

Select and actions from the pull-down menus. The pull-down lists include all On Delete On Update

actions that the database support, typically CASCADE, RESTRICT, NO ACTION and SET NULL. The

 field is read-only and gets its value automatically when you select which columns to include in Columns

the key later,

Use the controls to select the table that the foreign key refers to,Referenced Table

Check the checkbox for all columns in the column list that should be part of the foreign key and Include

then select the corresponding column in the referenced table from the pull-down menu in the Referenced

 field.Column

DbVisualizer 9.2 Users Guide

Page of 73 428

1.

2.

1.

2.

3.

1.

You can change the column order for the key with the and buttons.Up Down

To remove an existing foreign key:

Select the foreign key in the list in the top section,

Click the button.Remove

5.2.5 Unique Constraints Tab

The tab is only available for databases that support this constraint type. A unique Unique Constraints

constraint declares that the columns in the constraint must have unique values in the table.

The top portion of the tab holds a list of all unique constraints, and the lower portion holds a list of all table

columns.

To create a constraint:

Click the button,Add

Optionally enter a constraint name in the field. The field in the constraints listConstraint Name Columns

is read-only, filled automatically as you include columns in the constraint,

Select the columns to be part of the constraint by clicking the checkboxes in the Include field in the

columns list.

You can change the column order for the constraint with the and buttons.Up Down

To remove an existing constraint:

DbVisualizer 9.2 Users Guide

Page of 74 428

1.

2.

1.

2.

3.

1.

2.

Select the constraint in the list in the top section,

Click the button.Remove

5.2.6 Check Constraints Tab

The tab is only available for databases that support this constraint type. A check constraint Check Constraints

declares that a column value fulfills a certain condition when a row is inserted or updated. Some databases uses

check constraints to enforce nullability rules, so when you alter a table, you may see auto-generated check

constraints for columns that you marked as not allowing null values in the tab.Columns

To create a check constraint:

Click the button,Add

Optionally enter a constraint name in the field.Constraint Name

Enter the condition for the column in the field. You can use the same type of conditions as youCondition

use in a SELECT WHERE clause.

To remove an existing constraint:

Select the constraint in the list,

Click the button.Remove

DbVisualizer 9.2 Users Guide

Page of 75 428

1.

2.

3.

4.

1.

2.

5.2.7 Indexes Tab

The tab is only used for the MySQL database, as a replacement for the tab. The Indexes Unique Constraints

reason is that for MySQL, the CREATE TABLE statement can be used to declare both unique and non-unique

indexes. MySQL also does not make a clear distinction between a unique constraint (a rule, most often enforced

and implemented as an index by the database) and a unique index (primarily a database structure for speeding

up queries, with the side-effect of ensuring unique column values), as most other databases do.

The top portion of the tab holds a list of all indexes, and the lower portion holds a list of all table columns.

To create an index:

Click the button,Add

Optionally enter a name in the field. The field in the constraints list is Constraint Name Columns

read-only, filled automatically as you include columns in the constraint,

If you want the index columns to have unique values for all rows in the table, click the checkbox in the

 field,Unique

Select the columns to be part of the index by clicking the checkboxes in the field in the columns Include

list.

You can change the column order for the index with the and buttons.To remove an existing index:Up Down

Select the index in the list in the top section,

Click the button.Remove

DbVisualizer 9.2 Users Guide

Page of 76 428

1.

2.

5.2.8 SQL Preview

The area is updated automatically to match the edits made in the assistant. The preview is read SQL Preview

only, but you can copy the SQL to the SQL Commander and flip between formatted and unformatted views

using the corresponding choices in the preview area right-click menu.

5.2.9 Execute

When you are satisfied with the alterations, click the button to create it.Execute

5.3 Creating a Trigger

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding

SQL in the .SQL Commander (see page 155)

The Create Trigger dialog helps you create a trigger for a table.

Opening the Create Trigger Dialog (see page 76)

Trigger Editor (see page 78)

5.3.1 Opening the Create Trigger Dialog

To create a trigger for a table:

Locate the table in the tab tree,Databases

Select the table node and open the dialog from the right-click menu,Create Trigger

DbVisualizer 9.2 Users Guide

Page of 77 428

2.

3.

4.

5.

Enter the required info in the fields, e.g. trigger name. The fields are database dependent so the figure is

just an example,

The area contains stub code that you can later edit in the . For mostSource Trigger Editor (see page 78)

databases you can leave it as is, but for some databases, you must adjust the stub code to match your

database objects.

Click the button to create the triggerExecute

DbVisualizer 9.2 Users Guide

Page of 78 428

1.

2.

3.

4.

1.

2.

5.3.2 Trigger Editor

To edit the trigger code:

Expand the node for the table in the Databases tab tree,Trigger

Double-click the trigger node to open its tab,Object View

Open the tab and in the editor,Trigger Editor edit the code (see page 142)

Click the toolbar button to save (and for some databases, compile) the trigger.Save

If the database reports any errors, the location of the errors are highlighted with curly red underlines in the editor

for most databases. Hovering the mouse over such an underline shows the error message.

The tab in the results area also lists all errors. Clicking on the icon next to an error message selects the Log

corresponding line and positions the caret at the error location, if the database reports error locations.

5.4 Creating an Index

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding

SQL in the .SQL Commander (see page 155)

The Create Index dialog helps you create an index for a table without writing SQL.

To create an index for a table:

Locate the table in the tab tree,Databases

Select the table node and open the dialog from the right-click menu,Create Index

DbVisualizer 9.2 Users Guide

Page of 79 428

2.

3.

4.

5.

6.

7.

1.

2.

1.

2.

Enter the required info in the fields, e.g. index name. The fields are database dependent so for some

databases there are additional fields compared to the figure,

Click the button in the area to add an index column,Add Columns

Select the column to index from the drop down list,Column Name

Select the sort order for the index column from the radio buttons,Sort Order

Click the button to create the index.Execute

To remove an index column:

Select the column row,

Click the button.Remove

To move an index column

Select the column row,

Click the and button to move it.Up Down

DbVisualizer 9.2 Users Guide

Page of 80 428

1.

2.

3.

5.5 Viewing Table Data

A table's data can be viewed in in various ways in the tab in its tab.Data Object View

Opening the Data tab (see page 80)

Sorting (see page 82)

Where Filter (see page 82)

Quick Filter (see page 83)

Max Rows/Max Chars (see page 85)

Max Rows at First Display (see page 86)

Column Header Tooltips (see page 87)

Highlight Primary Key Columns (see page 87)

Show Only Some Columns (see page 87)

Auto Resize Columns (see page 88)

Right-Click Menu Operations (see page 88)

Creating Monitors (see page 91)

Aggregation Data for Selection (see page 91)

5.5.1 Opening the Data tab

To open the Data tab for a table:

Locate the table in the tab tree,Databases

Double-click the table node to open its tab,Object View

Open the sub tab.Data

DbVisualizer 9.2 Users Guide

Page of 81 428

Each column width is automatically resized to match the column width, including the column header, by default.

You can disable this behavior in the the Tool Properties dialog, in the category under the General tab.Grid

If is enabled, the setting can be used to limit the column Auto Resize Column Widths Max Column Width

width so that an extremely wide column does not take up all space.

In the same Tool Properties category, you can also disable , i.e. the row number shownShow Grid Row Header

to the left of the data rows, for read-only grids such as the Data tab in the DbVisualizer Free edition and result

sets from joined tables.

The column headers corresponds to the column names by default, but you can specify in the Tool Properties

dialog, in the Grid category under the General tab, that you like to use the column alias instead. This is mostly

useful for grids representing SQL Commander result sets, but may also be useful in the Data tab grid for some

databases.

The tab contains a number of features for locating and focusing on just the data of interest as described in Data

the following sections.

DbVisualizer 9.2 Users Guide

Page of 82 428

1.

2.

3.

1.

5.5.2 Sorting

You can sort the data grid based on the values in one or more columns:

Click on a column header to sort the grid in ascending order on the values in that column, indicated by an

up-arrow in the column header.

Click the same column header again to sort in descending order, indicated by a down-arrow in the

column header.

Click a third time to show the data in the order it was received from the database. This removes the sort

indicator.

To sort on more than one column, Ctrl-click (keep the Ctrl key pressed when clicking) on additional columns.

The grid is then sorted on the values in the first column you clicked on (indicated with a 1 next to the arrow), and

then all rows with the same value in the first column are sorted on the values in the second sort column (

indicated with a 2 next to the arrow), and so on.

5.5.3 Where Filter

You can use the filter capability in the tab to limit the number of rows shown in the grid, using the same Data

syntax as for an SQL WHERE clause. The Filter menu button in the grid toolbar contains all operations related

to using a filter.

The top entries in the menu are previously used filters for the table, if any. The checkbox is selected for the filter

that is currently in use. The filters are saved between DbVisualizer sessions, and you can toggle between them

by selecting them from the menu. The maximum number of filters to save is specified in the Tool Properties

dialog, in the category under the General tab.Table Data

You use the choice to disable all filters for the table, and the to permanently Use No Filter Clear Filter List

remove all filters for the table.

To create a new filter:

Select to launch the dialog,Configure Filter Filter Configuration

DbVisualizer 9.2 Users Guide

Page of 83 428

1.

2.

3.

4.

Select a column name, an operation and the value for the condition using the controls in the area,Filter

Add the condition to the filter by clicking the or button, and create additional conditions in the AND OR

same way if needed,

Click the button to apply the filter, save it and close the dialog, or close the dialog without Use Filter

applying and saving the filter by clicking the button.Close

You can use while editing the value field to reload the grid with that single condition applied, or in the Ctrl-Enter

editor to reload the grid based on all filter conditions created so far.

The area is similar to the area. You can select column names and sort order from the two lists, and Sort Filter

click the button to add the sort criteria for the single column to the complete criteria.Add

If you often need to tweak the filter conditions and want a more compact user interface, you can use the inline

filter view. Use the choice in the menu to toggle the visibility of the inline filter.Show/Hide Inline Filter Filter

5.5.4 Quick Filter

DbVisualizer 9.2 Users Guide

Page of 84 428

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

The acts on the data that is already loaded in the grid, as opposed of a Quick Filter Where Filter (see page 82

 which is used to limit the number of rows fetched from the database. With a , you can easily list) Quick Filter

only those rows in the grid that match the entered search string.

Use the Quick Filter pull-down menu (click on the down arrow next to the magnifying glass) to choose if the filter

should match cells in all columns or just one selected column, case or case insensitive matching, and where in

the cell the value must match.

For the option the following characters have special meaning:Use wild cards

? - The question mark indicates there is zero or one of the preceding element. For example, colou?r matches

both "color" and "colour".

 - The asterisk indicates there are zero or more of the preceding element. For example, ab*c matches "ac", "*

abc", "abbc", "abbbc", and so on.

DbVisualizer 9.2 Users Guide

Page of 85 428

1.

2.

 - The plus sign indicates that there is one or more of the preceding element. For example, ab+c matches "abc"+

, "abbc", "abbbc", and so on, but not "ac".

5.5.5 Max Rows/Max Chars

DbVisualizer limits the number of rows shown in the Data tab to 1000 rows, by default. This is done to conserve

memory. If this limit prevents you from seeing the data of interest, you should first consider:

Using a to only retrieve the rows of interest instead of all rows in the table,Where Filter (see page 82)

Exporting the table (see page 107) to a file

If you really need to look at more than 1000 rows, you can change the value in the field in the grid Max Rows

status bar. Use a value of 0 or -1 to get all rows, or a specific number (e.g. 5000) to set a new limit.

Character data columns may contain very large values that use up lots of memory. If you are only interested in

seeing a few characters, you can set the field in the grid status bar to the number of characters you Max Chars

want to see.

You can define how to deal with columns that have more characters than the specified maximum in the Tool

Properties dialog, in the Grid category under the General tab. You have two choices: or Truncate Values

.Truncate Values Visually

Truncate Values truncates the original value for the grid cell to be less then the setting of Max Chars.

This affects any subsequent edits and SQL operations that use the value since it's truncated. This

setting is only useful to save memory when viewing very large text columns.

Truncate Values Visually truncates the visible value only and leave the original value intact. This is the

preferred setting since it will not harm the original value. The disadvantage is that more memory is

needed when dealing with large text columns.

When the grid data is limited due to either the or value, you get an indication about this Max Rows Max Chars

in the rows/columns field in the grid status bar and in the corresponding limit field.

DbVisualizer 9.2 Users Guide

Page of 86 428

Along with the highlighted field, a warning pops up close to the field. You can disable this behavior in the Tool

Properties dialog, in the category under the General tab.Grid

5.5.6 Max Rows at First Display

By default, opening the Data tab for a table loads all rows, unless there is a Max Rows limit. If you have very

large tables and don't want to risk memory issues if you accidentally open the Data tab and have no Max Rows

limit, you can specify a limit. You do this in the Tool Properties dialog, in the Max Rows at First Display Table

 category under the General tab.Data

The default is -1, which means no limit. If you set it to a positive number, only the specified number of rows are

loaded when the Data tab is first opened for a table. To load more rows, click the button in the Data tab Reload

toolbar.

DbVisualizer 9.2 Users Guide

Page of 87 428

5.5.7 Column Header Tooltips

The column header tooltip shows data type information about the column. To see the tooltip, let the mouse

hover over the column header. The tooltip pops up in about a second.

5.5.8 Highlight Primary Key Columns

By default, a Primary Key column is shown with an icon in the column header. You can disable this in the Tool

Properties dialog, in the category under the General tab.Table Data

5.5.9 Show Only Some Columns

The dialog controls which columns you want to appear in a grid. Open the dialog by Grid Column Chooser

clicking the button above the vertical scrollbar in the grid.

The dialog shows all columns that are available in the grid. The checkmark in front of a Grid Column Chooser

column name indicates that the column is visible in the grid, while an unchecked box indicates that it is excluded

DbVisualizer 9.2 Users Guide

Page of 88 428

from the grid. Click the checkmark to change the visibility of a column. You can change the visibility for all

columns at once using the two visibility buttons in the dialog.

The order of the columns can also be adjusted in this dialog. Just select a row and use the and Up Down

buttons to move it up (left in grid) or down (right in grid).

If you want to revert your changes, you can click on the button to reset the grid, i.e., making all Default Layout

column visible and put them in their default locations.

Modifications of column visibility, size and order are saved between invocations of DbVisualizer for all

grids in the various tabs except for the tab.Object View Data

If you modify the column visibility in the tab, the changes persists throughout the session. For Data

instance, if you remove the column in the tab for the table EMPLOYEE, the column Name Data Name

remains excluded when you reload the table or come back to the tab for that table later in the Data

same session. You must manually make it visible again to bring it back. The changes are, however,

reset when you restart the application.

5.5.10 Auto Resize Columns

The column header right-click menu contains a number of options for automatic resizing of column widths.

5.5.11 Right-Click Menu Operations

The right-click menu for the grid contains a lot of operations for working with the data without changing it. In

addition to the common select, copy, and print operations, some operations that may require a bit of an

explanation are:

Operation Description

Copy Selection Copy all selected cells onto the system clipboard

DbVisualizer 9.2 Users Guide

Page of 89 428

Operation Description

Copy Selection

with Column

Header

Copy all selected cells including column header onto the system clipboard.

Copy Selection as

Formatted Text

Copy all selected cells including column header in fixed width columns onto the

system clipboard.

Copy Selection as

Comma List

Copy all selected cells, with cells from the same column formatted as comma

separated values

Copy Selection as

IN Clause

Copy all selected cells, with cells from the same column as formatted as an IN clause,

e.g. col1 IN ('val1', 'val2', 'val3')

Save Selected Cell Save the value of the selected cell to a file, selected with a file chooser dialog

Compare Compare (see page 121) the data in this grid to the data in other open grids.

Compare Selected

Cells

Compare the data in the two cells as text

Browse Row in

Window

Display all data for the selected row in a separate window.

 for a read/write grid, this entry is named .Note: Edit Row in Window

Browse Cell in

Window

Display the cell value in a separate window. This is especially useful for BLOB/CLOB

data.

 for a read/write grid, this entry is named .Note: Edit Cell in Window

Show in Navigator Open the tab with the current selections and sorting.Navigator (see page 123)

Describe Data Show detailed information about the columns in the grid.

Aggregation Data

for Selection

Displays aggregation data for the current selection. Read more in Aggregation Data for

 below.Selection (see page 91)

Generate Filter &

Sort

The operations in this submenu helps you create common Where Filters (see page

.82)

Create Row Count

Data Monitor

Creates a monitor (see page 91) for tracking the row count in the table over time.

Create Row Count

DIff Data Monitor

Creates a monitor (see page 91) for tracking the number of added or removed rows

in the table over time.

DbVisualizer 9.2 Users Guide

Page of 90 428

There are also a set of operations for generating SQL statements based on the current selection. Choosing any

of these creates the appropriate SQL and then switches the view to a new tab. You must useSQL Commander

these operations to edit table data in the DbVisualizer Free edition. With the DbVisualizer Pro edition, you can

instead use .inline and form based editing (see page 92)

Operation SQL Example

Script: SELECT ALL select *

from HR.COUNTRIES

Script: SELECT ALL WHERE select *

from HR.COUNTRIES

where COUNTRY_NAME = 'Brazil'

Script: SELECT ALL WITH

FILTER

select *

from HR.COUNTRIES

where REGION_ID = 1 // If this is the filter, see above

Script: INSERT INTO TABLE insert into HR.COUNTRIES

(COUNTRY_ID, COUNTRY_NAME, REGION_ID)

values ('', '',)

Script: INSERT COPY INTO

TABLE

insert into HR.COUNTRIES

(COUNTRY_ID, COUNTRY_NAME, REGION_ID)

values ('BR', 'Brazil', 2)

Script: UPDATE WHERE update HR.COUNTRIES

set COUNTRY_ID = 'BR',

COUNTRY_NAME = 'Brazil',

REGION_ID = 2

where COUNTRY_NAME = 'Brazil'

Script: DELETE WHERE delete from HR.COUNTRIES

where COUNTRY_NAME = 'Brazil'

You can generate SQL with either static values as they appear in the grid, or with DbVisualizer variables (see

. A variable is essentially a placeholder for a value in an SQL statement. When the statement is page 221)

executed, DbVisualizer locates all variables and presents them in a dialog where you can enter or modify values

for the variables. DbVisualizer replaces the variable placeholders with the new values before executing the

statement.

Variables are used in the generated SQL statements by default. You can disable the Include Variables in SQL

setting in the Tool Properties dialog, in the category under the General tab, to use literal values are Table Data

instead.

DbVisualizer 9.2 Users Guide

Page of 91 428

Here is an example of the SQL generated for with the Script: SELECT ALL WHERE Include Variables in SQL

setting enabled, assuming the table is named HR.COUNTRIES and has a column named COUNTRY_NAME

with the value 'Brazil' on the selected row:

select *

from HR.COUNTRIES

where COUNTRY_NAME = ${COUNTRY_NAME (where)||Brazil||String||where nullable ds=40 dt=VARCHAR }$

And here is the same example with the setting disabled:Include Variables in SQL

select *

from HR.COUNTRIES

where COUNTRY_NAME = 'Brazil'

5.5.12 Creating Monitors

A monitor in DbVisualizer is an SQL query executed at a specified frequency so you can track changes in data

over time. The result can be viewed either as a grid or a graph. The right-click menu for the grid in the Data tab

contains operations for creating two common types of monitors for the table: a monitor or a Row Count Data

 monitor. The first tracks the number of rows in the table over time and the second tracks Row Count Diff Data

the number of added or removed rows over time. Please read more about monitors in Monitoring Data Changes

.(see page 264)

5.5.13 Aggregation Data for Selection

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

The feature presents aggregation data organized per data type on the current Aggregation Data for Selection

selection in a grid. It provides information about cells holding numbers, text, date/time information and more.

The following is an example of what it shows:

DbVisualizer 9.2 Users Guide

Page of 92 428

With checked, the data is updated automatically when you change the selection in the grid. For Auto Update

very large selections, you may prefer to disable this feature and instead click when you want to refresh Update

the data. Click a link (blue underlined text) in the aggregation table to locate and highlight the actual value in the

source data grid. The setting simply treats all valid Handle Number Values in Text Types as Numbers

numbers in text data types as numbers and include them in the summary.Number Count

5.6 Editing Table Data

Only in DbVisualizer Pro

DbVisualizer 9.2 Users Guide

Page of 93 428

1.

2.

3.

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding

SQL in the .SQL Commander (see page 155)

With the DbVisualizer Pro edition, you can edit table data in the tab grid; just click a cell value and edit. Data

Edits are saved in a single database transaction which ensures that all or no changes are committed. The

editing feature supports saving binary and large text data and it even presents common data formats in their

respective viewers, such as image viewer, PDF, XML, HEX, etc.

Opening the Data tab (see page 93)

Editing Data in the Grid (see page 94)

Copy/Paste (see page 95)

Updates and Deletes Must Match Only One Table Row (see page 97)

Key Column(s) Chooser (see page 98)

Editing Multiple Rows (see page 99)

Data Type checking (see page 99)

New Line and Carriage Return (see page 99)

Using the Cell Editor/Viewer (see page 100)

Using the Form Editor/Viewer (see page 101)

Preview Changes (see page 103)

Editing Binary/BLOB and CLOB Data (see page 104)

5.6.1 Opening the Data tab

To open the tab for a table:Data

Locate the table in the tab tree,Databases

Double-click the table node to open its tab,Object View

Open the sub tab.Data

DbVisualizer 9.2 Users Guide

Page of 94 428

1.

2.

3.

Each column width is automatically resized to match the column width, including the column header, by default.

You can disable this behavior in the the Tool Properties dialog, in the category under the General tab.Grid

If is enabled, the setting can be used to limit the column Auto Resize Column Widths Max Column Width

width so that an extremely wide column does not take up all space.

5.6.2 Editing Data in the Grid

To edit a column value:

Select the column cell,

Type the new value, or double click to edit the current value,

Click the toolbar button to update the database.Save

You can also use the drop down menu to set a number of column values to things like null Set Selected Cells

or the current date or time.

DbVisualizer 9.2 Users Guide

Page of 95 428

1.

2.

3.

4.

1.

2.

3.

4.

1.

2.

3.

1.

2.

To add a new row:

Select the row above where you want to insert the new row,

Click the toolbar button,Add Row

Enter values for the columns,

Click the toolbar button to update the database.Save

To duplicate a row:

Select the row you want to duplicate,

Click the toolbar button,Duplicate Row

Edit at least the key column(s) value(s),

Click the toolbar button to update the database.Save

To delete one or more rows:

Select the rows to delete,

Click the toolbar button,Delete Rows

Click the toolbar button to update the database.Save

If you change your mind, you easily can undo edits:

Select the cell(s) you want to revert,

Click the toolbar button.Undo

Reverting all cells in a row that are marked as or removes the complete row from the grid whileInsert Duplicate

a marked row is cleared from its delete state. Undoing updated cells simply reverts the changes to the Delete

original values.

5.6.3 Copy/Paste

You can copy selected cell values with the right-click menu choice or the corresponding key Copy Selection

binding (or by default). The data on the clipboard may then be pasted either into Ctrl-C Command-C

DbVisualizer or any external application. The column and newline delimiter used for copy and paste operations

in the grid editor are defined by the settings in the category in the Tool Copy Grid Cells in CSV Format Grid

Properties dialog, under the General tab. The default setting are sufficient for most uses.

The grid editor supports pasting data from the major spreadsheet applications, such as Excel and OpenOffice.

The grid editor supports pasting single data as well as block of data. Copy/paste of binary data is transparent

between grids or in the same grid. Binary files may also be copied in an external application and pasted in a cell

in DbVisualizer (target cell must be a binary type).

DbVisualizer 9.2 Users Guide

Page of 96 428

Copy from spreadsheet Paste into DbVisualizer grid

A single cell is copied Paste into selected target cell

A single cell is copied Paste and fill the single column target selection

Multiple cells in a single row is copied Paste and fill the target selection

A block of cells is copied The block is pasted into the selected region

DbVisualizer 9.2 Users Guide

Page of 97 428

1.

2.

3.

Copy from spreadsheet Paste into DbVisualizer grid

A block of cells is copied The block is pasted into a non equal number of target cells

5.6.4 Updates and Deletes Must Match Only One Table Row

When you update or delete rows, DbVisualizer ensures that only one row in the table will be affected. This is to

prevent changes in one row to silently affect data in other rows. DbVisualizer uses the following strategies to

determine the uniqueness of the edited row:

Primary Key,

Unique Index,

Manually Selected Columns.

The Primary Key concept is widely used in databases to uniquely identify the key columns in tables. If the table

has a primary key, DbVisualizer uses it. There are situations when primary keys are not supported by a

database or when primary keys are supported but not used. If no primary key is defined, DbVisualizer checks if

DbVisualizer 9.2 Users Guide

Page of 98 428

there is a unique index. If there are several unique indexes, DbVisualizer picks one of them. If there is no

primary key or any unique indexes defined for the table, you need to manually choose what columns to use. The

 is automatically displayed if the key columns can't be determined automatically.Key Column Chooser

5.6.5 Key Column(s) Chooser

Normally database tables have a primary key or at least one unique index. If this is the case, editing is no

problem. If there is no way to uniquely identify rows in the table, you need to manually define what columns

DbVisualizer should use. While saving the changes, DbVisualizer checks that there is a way to identify unique

rows in the table. If it cannot be accomplished, the following window is displayed.

The key column chooser can also be manually opened via the Edit Table Data->Key Column Chooser

right-click menu choice.

If the database request to save the edits cannot uniquely identify the single row that should be changed, an error

dialog is displayed and the editing state is kept for that row in the grid editor.

DbVisualizer 9.2 Users Guide

Page of 99 428

5.6.6 Editing Multiple Rows

The grid editor supports editing multiple rows and saving all changes in one database transaction. Edited rows

are indicated with an icon in the row header:

 Cell(s) in the row has been edited

 Row is new

 Row is duplicated from another row

 Row is marked for deletion (edit is not allowed)

5.6.7 Data Type checking

When leaving an edited cell, the new value is validated with the data type for the column. If there is an error, the

following dialog is displayed.

5.6.8 New Line and Carriage Return

If a cell in the grid editor or form editor contains new line, carriage return or tab characters, these are not visually

represented in the grid. Instead a warning will be displayed whenever you try to edit such value:

DbVisualizer 9.2 Users Guide

Page of 100 428

You may chose to edit the value in the , which we recommend, as the control Cell Editor (see page 100)

characters will then be preserved. Alternatively, you can edit the value in the grid anyway but you then risk

loosing the control characters.

5.6.9 Using the Cell Editor/Viewer

The is available in the right-click menu for all grids in DbVisualizer. It presents the data for a single Cell Viewer

cell (column in a row) in a window. If the data is of a recognized type, it is presented by a corresponding viewer:

Image viewer

XML viewer

Serialized Java object viewer

Hex viewer

Text viewer

The Cell Viewer also allow you to save the data to a file and to print it.

The adds editing capability to the cell viewer. You may import data from a file or manually change Cell Editor

the text in a text editor.

DbVisualizer 9.2 Users Guide

Page of 101 428

5.6.10 Using the Form Editor/Viewer

The is available in the right-click menu () for all grids in DbVisualizer. It is Form Viewer Browse Row in Form

used to browse information and to present binary data in viewers.

The adds editing capability to the form viewer. This editor is useful when inserting new rows and Form Editor

when it is important to get a more balanced overview of all the data.

The form editor "rotate" the data in one row and presents it as a vertical form with the column name as a label.

All edits made in the form editor are reflected in the grid with the edited state icon being updated along with new

values. Saving edits in the database is always done with the Save button in the grid editor toolbar, just as for

data edited directly in the grid.

Open the form editor via the right-click menu choice, via the corresponding button in the Edit Row in Form

toolbar or by double-clicking the row number header.

DbVisualizer 9.2 Users Guide

Page of 102 428

The same row looks like this in the row form window:

The field contains an icon for primary key columns and the field corresponds to the column name in Key Name

the grid. None of or the fields can be edited. You can edit the values in the form in the same way as Key Name

you edit values in the grid editor.

DbVisualizer 9.2 Users Guide

Page of 103 428

The form viewer presents images as thumbnails. The size of these is controlled by the Image Thumbnail Size

setting in the Tool Properties dialog, in the category under the General tab. To see the original Form Viewer

size of an image, open the cell in the cell viewer either by selecting in the grid right-click Edit in Cell Window

menu, the toolbar button or by double-clicking on the image.

If you want numbers to be right-aligned in the Form Viewer, enable in the Tool Right Aligned Numbers

Properties dialog, in the category under the General tab.Form Viewer

5.6.11 Preview Changes

You may preview the SQL statements that will be executed when choosing to the edits via the Save Edit Table

 right-click menu choice.Data->SQL Preview

The listed SQL statements may not be 100% identical to what is sent to the database, as the save

process uses variable binding to pass values to the database.

DbVisualizer 9.2 Users Guide

Page of 104 428

5.6.12 Editing Binary/BLOB and CLOB Data

Due to the nature of binary/BLOB and CLOB data, cells of these types can only be fully modified and viewed in

the . (There is partial support in the to view image data Cell Editor (see page) Form Editor (see page 101)

and to load from file).

In the grid, Binary/BLOB and CLOB data is by default presented by an icon and the size of the value. You can

select another presentation format in the Tools Properties dialog, in the Grid / Binary/BLOB and CLOB Data

category under the General tab. Selecting results in performance penalties and the memory By Value

consumption increases dramatically.

In the same Tool Properties category, you can also specify how to handle Copy/Paste and Drag and Drop

when pasting binary data in a target component that doesn't support binary data.

Editing binary data can be done by importing from a file or via the text editor in the Cell Editor. You can also

copy the file in the operating system's file browser and paste it into a BLOB/CLOB cell.

Binary data in DbVisualizer is the generic term for several common binary database types:

LONGVARBINARY

BINARY

VARBINARY

BLOB

The Image Viewer supports displaying full size images for the following formats:

GIF

JPG

PNG

TIFF

BMP

PDF

5.7 Working with Binary and BLOB Data

DbVisualizer provides special support for working with Binary/BLOB data in a number of areas, such as:

Viewing and Editing Binary/BLOB data (see page 104),

Exporting Binary/BLOB data (see page 109),

Importing Binary/BLOB data (see page)

DbVisualizer 9.2 Users Guide

Page of 105 428

1.

2.

5.8 Working with Large Text/CLOB Data

DbVisualizer provides special support for working with Large Text/CLOB data in a number of areas, such as:

Viewing and Editing Large Text/CLOB data (see page 104),

Exporting Large Text/CLOB data (see page 109),

Importing Large Text/CLOB data (see page)

5.9 Using Max Rows and Max Chars for a Table

DbVisualizer limits the number of rows shown in the Data tab to 1000 rows, by default. This is done to conserve

memory. If this limit prevents you from seeing the data of interest, you should first consider:

Using a to only retrieve the rows of interest instead of all rows in the table,Where Filter (see page 82)

Exporting the table (see page 107) to a file

If you really need to look at more than 1000 rows, you can change the value in the field in the grid Max Rows

status bar. Use a value of 0 or -1 to get all rows, or a specific number (e.g. 5000) to set a new limit.

Character data columns may contain very large values that use up lots of memory. If you are only interested in

seeing a few characters, you can set the field in the grid status bar to the number of characters you Max Chars

want to see.

You can define how to deal with columns that have more characters than the specified maximum in the Tool

Properties dialog, in the Grid category under the General tab. You have two choices: or Truncate Values

.Truncate Values Visually

Truncate Values truncates the original value for the grid cell to be less then the setting of Max Chars.

This affects any subsequent edits and SQL operations that use the value since it's truncated. This

setting is only useful to save memory when viewing very large text columns.

Truncate Values Visually truncates the visible value only and leave the original value intact. This is the

preferred setting since it will not harm the original value. The disadvantage is that more memory is

needed when dealing with large text columns.

When the grid data is limited due to either the or value, you get an indication about this Max Rows Max Chars

in the rows/columns field in the grid status bar and in the corresponding limit field.

DbVisualizer 9.2 Users Guide

Page of 106 428

1.

2.

3.

Along with the highlighted field, a warning pops up close to the field. You can disable this behavior in the Tool

Properties dialog, in the category under the General tab.Grid

5.10 Changing the Data Display Format

Some data, like numeric and date/time data, can be displayed in many different ways.

To define how to display and enter data in grids and forms in DbVisualizer:

Open Properties,Tools->Tool

Select the node under the tab,Data Formats General

Select or enter your preferred format for the different data types.

DbVisualizer 9.2 Users Guide

Page of 107 428

5.10.1 Date, Time and Timestamp formats

The lists for date, time and timestamp format contain collections of standard formats. If these formats are not

suitable, you can enter your own format in the appropriate field. The tokens used to define the format are listed

in the right-click menu when the field has focus.

The complete documentation for these tokens is available at the following web page: SimpleDateFormat (http://

 docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html) .

5.10.2 Number formats

The lists for number and decimal number contain collections of standard formats. If these formats are not

suitable, you can enter your own format in the appropriate field. The tokens used to define the format are listed

in the right-click menu when the field has focus, and complete documentation for these tokens is available at the

following web page: .DecimalFormat (http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html)

5.11 Exporting a Table

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

DbVisualizer 9.2 Users Guide

Page of 108 428

1.

2.

3.

4.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

You can export an individual table using the Export Table assistant.

Output Format (see page 108)

Output Destination (see page 108)

Options (see page 109)

Using Variables in Fields (see page 109)

Exporting Binary/BLOB and CLOB Data (see page 109)

Saving And Loading Settings (see page 110)

Other Ways to Export Table Data (see page 110)

To export a table:

Select the table node in the tab tree,Databases

Open the dialog from the right-click menu,Export Table

Select an , , and ,Output Format Output Destination Options

Click .Export

5.11.1 Output Format

You can export tables in one of these formats: , , , , (Excel), or .CSV HTML SQL XML XLS JSON

For the and formats, you can choose to export the DDL and the table data; the other formats only SQL XML

export table data.

You can control whether to by default in the DDLuse delimited identifiers and/or qualified names (see page 276)

and INSERT statements generated for the SQL format, and you can override the defaults in the Export dialog for

a single export operation.

5.11.2 Output Destination

The destination can be one of:

a file,

an open or new SQL Commander tab, with options for where in an open SQL Commander to insert the

result,

to the system clipboard.

DbVisualizer 9.2 Users Guide

Page of 109 428

5.11.3 Options

The options depend on the selected Output Format.

For the SQL and XML formats, you can choose to export the DDL, DDL for the indexes, and the table data: as

INSERT statements for the SQL statement or in one of three XML formats.

For the XLS format, you can choose export the data as either regular Binary Excel or OOXML for Excel 2007

and later.

Most formats also let you specify other options, such as delimiters, title and descriptions. Just select an Output

Format to see which options are available.

You can also adjust the specifically for the exported data. By default, the formats defined in Tool Data Formats

Properties are used, but sometimes you need to export dates and numbers in a different format because you

intend to import the data into a different type of database.

In the dialog you can also specify how to quote text data and how to handle quotes Data Format Settings

within the text value.

5.11.4 Using Variables in Fields

You can use some of the (, pre-defined DbVisualizer variables (see page 221) ${dbvis-date}$ ${

, , , and dbvis-time}$ ${dbvis-timestamp}$ ${dbvis-connection}$ ${dbvis-database-type}$ ${

) in all fields that hold free text (e.g. title and description fields) and as part of the file name dbvis-object}$

field.

5.11.5 Exporting Binary/BLOB and CLOB Data

You can use the export assistant to export Binary/BLOB and CLOB data. You enable this by choosing as File

the data format for and/or data. Optionally, you can specify the directory for the data files. Binary/BLOB CLOB

If you do not specify a directory, the operating system's default directory for temporary files (e.g. or C:\TEMP /

) is used.tmp

The data for each individual value of this type is then exported to a separate file and a DbVisualizer variable

referencing the file is inserted in the main export file.

DbVisualizer 9.2 Users Guide

Page of 110 428

5.11.6 Saving And Loading Settings

If you often use the same settings, you can save them as the default settings for this assistant. If you use a

number of common settings, you can save them to individual files that you can load as needed. Use the Settings

button menu to accomplish this:

Save as Default Settings

Saves all format settings as default. These are then loaded automatically when open an Export Schema

dialog

Use Default Settings

Use this choice to initialize the settings with default values

Remove Default Settings

Removes the saved defaults and restores the regular defaults

Load

Use this choice to open the file chooser dialog, in which you can select a settings file

Save As

Use this choice to save the settings to a file

Copy Settings to Clipboard

Use this choice to copy all settings to the system clipboard. These can then be pasted into the SQL

Commander to define the settings for the @export editor commands.

5.11.7 Other Ways to Export Table Data

Export all or selected tables with the assistant,Export Schema (see page 152)

Export a subset of the table data with the .@export command (see page 209)

5.12 Importing Table Data

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

You can import data using the Import Table Data wizard.

Input File Format and Other Options (see page 111)

CSV format page (see page 112)

Excel format page (see page 113)

Data Formats and Data Type Per Column (see page 114)

DbVisualizer 9.2 Users Guide

Page of 111 428

1.

2.

3.

4.

5.

6.

7.

8.

Matching Columns and Data Types for an Existing Table (see page 116)

Adjusting Table Declaration for a New Table (see page 118)

Importing Binary/BLOB and CLOB Data (CSV Only) (see page 120)

Saving And Loading Settings (see page 120)

Other Ways to Import Table Data (see page 121)

Known limitations (see page 121)

You can import data from a file into an existing table or to a new table. The import source can be either a CSV

file or an Excel file (or). The steps are almost identical:.xls .xlsx

Select the table node for the table you want to import to, or the node if you are importing to a new Tables

table, in the tab tree,Databases

Open the wizard from the right-click menu,Import Table Data

Specify the input file on the first wizard page (CSV or Excel file),

[Excel only] : If the input file is an Excel file, you are asked to choose the Excel sheet to import on the

next page.

Specify file format and other options,

Specify data formats and the data type per column,

Adjust details about the destination table,

Click on the last page.Import

Instead of choosing Import Table Data from the right-click menu, you can from drag and drop a file

the operating system's file manager on the Tables node or a table node.

How many INSERT statements to execute during the import process before committing the changes can be

specified in the tab for the connection, in the category.Properties Transaction

5.12.1 Input File Format and Other Options

On the File Format page, you specify what and how the data in the source file should be imported. This includes

specifying what row to start the import from and if empty rows should be skipped.

Currently DbVisualizer supports import of CSV files and the Excel file formats ".xsl" and "xslx".

DbVisualizer 9.2 Users Guide

Page of 112 428

CSV format page

In the section, define the character that separates the columns in the file. If you enable ,Delimiters Auto Detect

DbVisualizer tries the following characters:

comma ","

tab "TAB"

semicolon ";"

percent "%"

DbVisualizer 9.2 Users Guide

Page of 113 428

You can specify any character sequence as a delimiter, but it must not contain more than four

characters.

You can use the area to further specify how to read the input file, for instance if certain rows should be Options

skipped and how text data is quoted.

The section at the bottom of the page shows a preview of the parsed data in the tab and the original Data Grid

source file in the tab. If a row in the Grid tab is red, it indicates that the row will be ignored during the import File

process. This happens if any of the settings result in rows not being qualified.Options

Excel format page
The Excel format page is very much like the CSV format page.

As Excel is from start organized in columns and rows the setting is not applicable to Excel Column delimiter

files. The and the options are also not supported for Excel.Skip Rows Starting With Text Quoted Between

As shown in the snapshot below there is no tab for Excel files. File

The tab shows a preview of the data, just as in the CSV case.Grid

DbVisualizer 9.2 Users Guide

Page of 114 428

5.12.2 Data Formats and Data Type Per Column

The Data Formats page is used to define formats for some data types. The first row in the preview grid contains

a data type drop-down lists. DbVisualizer tries to determine the data type for each column by looking at the

value for the number of rows specified as . If this data type is incorrect for a column, use the Preview Rows

drop-down lists to select the appropriate type.

DbVisualizer 9.2 Users Guide

Page of 115 428

If you need to change the data type for a number of columns, e.g. set them all to String, you can Copy/

Paste the data type. First change it for one of the columns using the drop-down, select and copy that

new data type value and then select the data type for all other columns and use paste to change them

all at once. If you make a mistake, you can change the value to let DbVisualizer Preview Rows

determine the types again.

If you import to an existing table, there is yet another way to adjust the data types for the file columns, described

in the next section.

DbVisualizer 9.2 Users Guide

Page of 116 428

5.12.3 Matching Columns and Data Types for an Existing Table

When you are importing to an existing table, the Import Destination page provides two options: and Grid

. You can use the choice to import the data into a grid that is presented in its own Current Database Table Grid

window in DbVisualizer if you just want to just process the data in some way without saving it in the database.

When the choice is selected, the page shows information about the table into which Current Database Table

the data will be imported in the grid shows the columns in the selectedMap Table Columns with File Columns

database table and the columns in the source file.

DbVisualizer automatically associates the columns in the source file with the columns in the target table in the

order they appear. If the columns appear in a different order in the file than in the table, but they are named the

same, you can use the auto-mapping menu in the upper right corner of the Map Table Columns with File

DbVisualizer 9.2 Users Guide

Page of 117 428

 grid to automatically map the columns by name. and Columns Map by Column Name Map by Column Index

do exactly what it sounds like. sets the for each columnMap File Data Type = Table Data Type File Data Type

to the type of the corresponding table column.

If the column names are different between the file and the table and also appear in different order, you can

manually map them using the drop-down lists in the File Column Name field. Choose the empty choice in the

columns drop-down to ignore the column during import.

You can use copy/paste of the values in the and fields to quickly File Column Name File Data Type

fill the selection of cells instead of manually selecting the correct data in the drop-downs.

DbVisualizer 9.2 Users Guide

Page of 118 428

There is also a checkbox. Check this box if you want the SQL statements for Use delimited identifiers

importing the table to use delimited identifiers; in other words, if you want to use table and column names with

special characters, mixed case, or anything else that requires delimited (quoted) identifiers.

5.12.4 Adjusting Table Declaration for a New Table

When you are importing to a new table, the Import Destination page provides two options: and Grid New

. You can use the Grid choice to import the data into a grid that is presented in its own window Database Table

in DbVisualizer if you just want to just process the data in some way without saving it in the database.

When the New Database Table choice is selected, you are presented with a field for the table name and a

number of tabs for column and constraint declarations. The Columns tab is filled out based on the source data

and the data types from the Data Formats page.

DbVisualizer 9.2 Users Guide

Page of 119 428

Note that it is not always possible to find a database specific type for the data format specified on the Data

Format page. You must then pick the correct type from the drop-down menu. The size for string Data Type

column types may also need to be adjusted. By default, the size is set to the maximum number of characters

found for the column in the number of rows specified as , adjusted up to the next power of ten. Preview Rows

You can ignore certain columns by removing them in the tab. and other constraints can be Columns Keys

created using the other tabs.

You can go back to the Data Format page and increase the value if you believe that it will help Preview Rows

DbVisualizer to pick better defaults. If you do so, you need to click the button when you come back to Reload

this page to rescan the source data and get new default values.

If you make a mistake, or if the import fails, so you have to go back and make adjustments before you import

again, make sure you enable . It is disabled by default to prevent you from Drop existing table, if any

DbVisualizer 9.2 Users Guide

Page of 120 428

accidentally dropping an existing table when you intend to import to a new table, but if the import fails, the new

table may already have been created so it needs to be dropped before a new table with your adjusted input can

be created.

There is also a checkbox. Check this box if you want the SQL statements for Use delimited identifiers

importing the table to use delimited identifiers; in other words, if you want to use table and column names with

special characters, mixed case, or anything else that requires delimited (quoted) identifiers.

5.12.5 Importing Binary/BLOB and CLOB Data (CSV Only)

If you have exported data to a CSV file using DbVisualizer, use the Import Table Data feature to import it. On the

Data Format page, ensure that the format for the source file column is set to or .BLOB CLOB

If you have exported Binary/BLOB and CLOB data as an SQL script, you just run the script in the SQL

Commander to import it. When the SQL Commander encounters a variable that refers to a file, it reads the file

and inserts the content as the column value.

5.12.6 Saving And Loading Settings

If you often use the same settings, you can save them as the default settings for this assistant. If you use a

number of common settings, you can save them to individual files that you can load as needed. Use the Settings

button menu to accomplish this:

Save as Default Settings

Saves all format settings as default. These are then loaded automatically when open an Export Schema

dialog

Use Default Settings

Use this choice to initialize the settings with default values

Remove Default Settings

Removes the saved defaults and restores the regular defaults

Load

Use this choice to open the file chooser dialog, in which you can select a settings file

Save As

Use this choice to save the settings to a file

DbVisualizer 9.2 Users Guide

Page of 121 428

1.

2.

3.

1.

2.

3.

5.12.7 Other Ways to Import Table Data

If you have a script containing INSERT statements for all data, you can execute it in the SQL Commander (see

.page 173)

5.12.8 Known limitations

Excel files cannot contain CLOB/BLOB type of data (e.g. images etc). Cells with this kind of data are

imported as empty.

There is a size limitation when importing Excel files with the filename extension. The size limitation .xls

is roughly 20 megabytes, depending on your configuration and how much memory is used for other

things. Increasing DbVisualizer max memory (http://confluence.dbvis.com/pages/viewpage.action?pageId=

 may allow you to import larger files.3146118)

5.13 Comparing Tables

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

You can compare different aspects of a table to other tables and/or result set grids.

For instance, to compare the DDL for a table to the DDL for another table:

Open the tab for the table,DDL

Open the tab for the other table,DDL

Select from the right-click menu in one of the tabs to Compare DDL compare their text content (see page

.256)

To compare the table data to the data of another table or a result set:

Open the tab for the table,Data

Open the tab for another table or execute an SQL query to open a result set tab,Data

Select from the right-click menu in one of the tabs to Compare compare their grid content (see page 258)

.

You can do the same for all the other Object View sub tabs containing a grid, such as the or Primary Key

 tab.Columns

http://confluence.dbvis.com/pages/viewpage.action?pageId=3146118
http://confluence.dbvis.com/pages/viewpage.action?pageId=3146118
http://confluence.dbvis.com/pages/viewpage.action?pageId=3146118

DbVisualizer 9.2 Users Guide

Page of 122 428

1.

2.

3.

4.

5.

5.14 Viewing Table Relationships

To see how a table is related to other tables through Foreign Keys:

Locate the table in the tab tree,Databases

Double-click the node to open its tab,Object View

Select the sub tab,References

Select from the drop-down list in the toolbar to see tables referenced by foreign keys in Imported Keys

this table,

Select from the drop-down list to see tables referencing this table by foreign keys.Exported Keys

You can select among different graph layouts in the layout drop-down list in the toolbar: , , Hierarchic Organic

, or .Orthogonal Circular

Other layout settings can be changed in the area, which is shown or hidden with the settings Graph Control

toggle button in the toolbar. For instance, you can select how much information to include for each table in the

graph: just the , the column(s) or all .Table Name Primary Key Columns

The graph can be to a file in , , , or or as a Graph Modeling Language (Exported JPG GIF PNG SVG PDF Saved

) file that you can then open in the tool from yWorks GML yEd (http://www.yworks.com/en/products_yed_about.html)

for further manipulation.

http://www.yworks.com/en/products_yed_about.html

DbVisualizer 9.2 Users Guide

Page of 123 428

1.

2.

3.

You can control whether the table names should be in the qualified with the schema/catalog (see page 276)

graph.

5.15 Navigating Table Relationships

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

A powerful way to study database data is to navigate between the tables in a schema by following table

relationships declared by Primary and Foreign Keys. DbVisualizer includes a feature for this purpose,Navigator

visualizing the relationships graphically while making the data for each navigation case easily accessible in a

data grid.

Opening the Navigator (see page 123)

Navigating Realtionships (see page 124)

Adding Context Information to the Graph (see page 128)

Arranging the Graph (see page 129)

Exporting and Printing the Graph (see page 130)

Opening the Navigator from the Data tab (see page 131)

5.15.1 Opening the Navigator

To launch the Navigator:

Locate the table you want to start the navigation from in the tab tree,Databases

Double-click the table node to open its tab,Object View

Select the sub tab.Navigator

DbVisualizer 9.2 Users Guide

Page of 124 428

The tab has two parts: a graphical view and a data grid. Initially, the graphical view shows just the Navigator

selected start table, and the data grid shows the data for the start table.

The data grid is of the same type as you encounter in other parts of DbVisualizer, such as in the Data tab (see

, but extended with a list and a button.page 92) Related Table Tag

5.15.2 Navigating Realtionships

Data navigation in DbVisualizer means following table relationships declared by Primary and Foreign Keys,

using a unique key value. In the example schema shown in the screen shots in this section, there is a table

named with a primary key named . Another table named has a DEPARTMENTS DEPARTMENT_ID EMPLOYEES

foreign key constraint, declaring that values in its column refer to primary key values in the DEPARTMENT_ID

column with the same name in the table.DEPARTMENTS

DbVisualizer 9.2 Users Guide

Page of 125 428

If you use as you start table, you can easily navigate to the table for different DEPARTMENTS EMPLOYEES

 values. In the data grid, select one or more columns in the row that holds the DEPARTMENT_ID

 you want to use for navigation. In the figure above, the column in the rowDEPARTMENT_ID DEPARTMENT_NAME

for is selected.DEPARTMENT_ID = 60

Next, bring up the list. It lists all tables the table is related to through Primary and Related Table DEPARTMENTS

Foreign Keys, with the key columns within parenthesis. A forward arrow (->) between the table names means

that the table has a foreign key relation to the named table. A backward arrow (<-) means that DEPARTMENTS

the named table has a foreign key relation to the table.DEPARTMENTS

DbVisualizer 9.2 Users Guide

Page of 126 428

When you select "DEPARTMENTS (DEPARTMENT_ID) <- EMPLOYEES (DEPARTMENT_ID)" in the Related

 list, a node is added to the graph for the table, with an arrow from the table Table EMPLOYEES DEPARTMENTS

node to show the navigation direction. We call this a navigation case.

The node contains the key columns (just one in this example) and their values.EMPLOYEES

The arrow between the nodes is labeled with the key column name. In addition, the arrow label also shows the

name and value of the column that you selected in the table when you created this navigation DEPARTMENTS

case, i.e., the column. If you select multiple columns when you create a navigation case, allDEPARTMENT_NAME

non-key column names and values are included in the arrow label. This can make it easier to see at a glance

what a navigation case represents.

The grid is also updated when you create a navigation case, to show all rows in the table you navigated to that

has a key value corresponding to the selected key value in the table you navigated from. In this case, it shows

all rows in the table with equal to .EMPLOYEES DEPARTMENT_ID 60

DbVisualizer 9.2 Users Guide

Page of 127 428

You can edit the grid values, but be aware that if you change the value of a key in the grid for a

navigation case, the row will disappear from the grid since the grid only shows rows with keys

matching the navigation case key value.

You can continue to create more navigation cases from any node in the graph. For instance, if the schema

contains a table with job history information for employees, you can navigate to the history for an employee from

the node. Or, you can select the node in the graph to navigate to the EMPLOYEES DEPARTMENTS EMPLOYEES

table for a different department. Just click on the node, select another row in the data grid and DEPARTMENTS

then the same list entry.Related Table

If you want to create multiple navigation cases from one table to another using the same relationship,

you can select columns in multiple rows in the first table. When you make a selection in the Related

 list, one navigation case per row is created.Table

DbVisualizer 9.2 Users Guide

Page of 128 428

Every time you select a node in the graph, the data grid is updated to show the corresponding data. The grid

settings for one node are independent of the settings for another node. For instance, if you define a filter for one

node, the filter is only associated with the grid for that node.

5.15.3 Adding Context Information to the Graph

The navigation node always shows the key columns and their values, but sometimes you may want to add other

columns to the node to better describe what it represents. This is called tagging the node. There are two ways to

do so: drag and drop cells from the grid to any node, or use the button in the grid toolbar to tag the currentlyTag

selected node with the currently selected cells in the grid.

To drag and drop cells to a node, select one or more cells in the grid. With the left mouse button pressed and

the mouse positioned over one of the selected cells, drag the cells over a node in the graph and release the

mouse button. The cells are added to the node.

DbVisualizer 9.2 Users Guide

Page of 129 428

Alternatively, you can select the cells in the grid and click on the Tag button () to add the cell values to the

currently selected node.

5.15.4 Arranging the Graph

As you add navigation cases, you may find that you need to move nodes around, remove selected nodes, zoom

and move around in the graph, etc.

You can rearrange the layout of the graph by selecting a node and, with the left mouse button pressed, drag it

around. The arrow and its label move with the node.

The toolbar for the graph offers a number of tools to help you with other tasks:

Clicking the button removes all navigation cases, leaving just the node for the table you started with.Reload

You use the button to control the display of an Overview control, see below.Show/Hide Controls

The button lets you zoom into the graph, one step per click.Zoom In

The button zooms the graph out one step with each click.Zoom Out

The button zoom the currently selected node.Zoom Selected Area

Clicking the button zooms the graph so that all items are shown with their standard size.Zoom 100%

Toggle the Magnifying Mode. When enabled, the content around the mouse pointer is magnified.

Use the button to make all graph items fit in the graph display area.Fit

The button lays out all graph item with standard positions, distances between items, etc.Relayout

DbVisualizer 9.2 Users Guide

Page of 130 428

The button removes the selected node. It is only enabled when a navigation case node is Remove Node

selected.

Toggle between and . With enabled, you can move the graph contentNavigation Edit Modes Navigation Mode

with the left mouse button depressed.

The control is useful for large graphs that do not fit into the display area.Overview

The gray area in the control indicates the portion of the graph that is currently shown in the display Overview

area. You can drag the gray area around to study other portions of the graph.

To get a larger graph display area, you can put the control in a separate window. Just uncheck the Overview

 checkbox.Docked

5.15.5 Exporting and Printing the Graph

You can also export the graph to an image file or print it. Use the corresponding toolbar buttons to do this:

Export the graph to a file in , , , or format.JPG GIF PNG SVG PDF

Print the graph

Show a preview of how the graph will be printed

When you print the graph, you are prompted for information about what to print (the Graph or the View, i.e., just

the portion visible in the display area) and how many rows and columns to split the printing over (one page is

used for each row/column).

DbVisualizer 9.2 Users Guide

Page of 131 428

1.

2.

3.

5.15.6 Opening the Navigator from the Data tab

Sometimes, you may realize that you want to analyze the relationships for a table when you are working with it

in the tab. If you have configured the tab to show only filtered data, sorted in a specific way, etc. Data Data

opening the tab and making all the same configurations there may be a bit of a hassle. A more Navigator

convenient way is to just pick in the right-click menu in the tab. It opens the table in Show in Navigator Data

the tab with all the same configurations as you made in the tab.Navigator Data

5.16 Viewing the Table DDL

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

To see the DDL (CREATE statement) for a table:

Locate the table node in the tab tree,Databases

Double-click the table node to open its tab,Object View

Select the sub tab.DDL

The DDL shown is based on metadata retrieved from the database, but it may not include some

database-specific clauses, such as storage clauses. For some databases, there is an additional sub tab named

 (or similar) that shows the DDL as generated by the database itself, including all clauses.Native DDL

5.17 Filtering Tables in the Tree

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

If you have many tables in the tree, it may be hard to find the ones of most interest. You can then define a filter

so that only a few tables are shown, as described in .Filtering Database Objects (see page 49)

DbVisualizer 9.2 Users Guide

Page of 132 428

5.18 Showing Row Count in the Tree

You can use the menu choice to see the number of rows within Database->Show/Hide Table Row Count

parenthesis next to the table name in the Database tab tree.

Enabling this property results in a performance degradation.

5.19 Using Permissions for Table Data Editing

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

The functionality is a security mechanism, where you can specify that certain database operations Permission

must be confirmed. You configure permissions in the Tool Properties dialog, in the category of the Permissions

General tab, per (Development, Test and Production).connection mode

You specify which connection mode to use for a connection in the tab of the Object View tab for the Properties

connection.

The permission feature is part of DbVisualizer and does not replace the authorization system in the

actual database.

For table grid edits, you can pick the permission type from a drop-down list for each operation:

Permission Type Description

Confirm A confirmation window is displayed, and you can accept the operation or cancel it

No Confirm The SQL operation is performed without any confirmation

DbVisualizer 9.2 Users Guide

Page of 133 428

1.

2.

5.20 Scripting a Table

To open the Script Table dialog, where you can insert generated text for a table in an SQL Commander editor:

Select one or more table nodes in the Databases tab tree,

Choose from the right-click menu.Script Table

You can also launch the dialog by dragging and dropping one or more nodes of the same type in an SQL

Commander editor.

If you just want to insert the object names in the editor, hold down the key (or the key on Mac Ctrl Alt

OS X) while dragging and dropping. This behavior can be reversed in , in the Tool Properties SQL

 category, so that dropping without pressing a key inserts the names and pressing the keyCommander

launches the dialog.

The Script dialog provides a choice of which type of statement to generate, options for formatting, use of

delimited identifiers, qualified names and statement delimiters. You can also pick an open SQL Commander or a

new as the destination, and where in the SQL Commander editor to insert the text.

DbVisualizer 9.2 Users Guide

Page of 134 428

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

7.

8.

6 Working with Views
DbVisualizer provides many ways to work with views.

6.1 Creating a View

There is no GUI dialog for creating a view, but you can:

Use the to create the SELECT statement graphically,Query Builder (see page 189)

Load the generated SELECT statement into the SQL Editor by clicking the corresponding button in the

toolbar,

Add before the SELECT statement,CREATE VIEW name AS

Execute the CREATE VIEW statement.

6.2 Altering a View

Views can typically not be altered; they must be dropped and recreated. You can:

Select the view in the tree,Databases

Double-click the view node to open its tab,Object View

Open the sub tab,DDL

Select from the tab's right-click menu, which opens an tab Copy to New Editor DDL SQL Commander

with the DDL,

Remove the CREATE VIEW part in the editor so you are left with just the SELECT SQL Commander

statement,

Load the SELECT statement into the and alter it graphically,Query Builder

Launch the assistant from the view node's right-click menu, and click to drop it,Drop View Execute

Create the new view (see page 134) from the altered SELECT statement.

6.3 Editing a View

You can edit view data the same as you .edit table data (see page 92)

6.4 Exporting a View

You can export a view the same way as you .export a table (see page 107)

DbVisualizer 9.2 Users Guide

Page of 135 428

1.

2.

3.

1.

2.

6.5 Viewing the View DDL

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

To see the DDL (CREATE statement) for a view:

Locate the view node in the tab tree,Databases

Double-click the view node to open its tab,Object View

Select the sub tab.DDL

6.6 Filtering Views in the Tree

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

If you have many views in the tree, it may be hard to find the ones of most interest. You can then define a filter

so that only a few views are shown, as described in .Filtering Database Objects (see page 49)

6.7 Scripting a View

To open the Script View dialog, where you can insert generated text for a view in an SQL Commander editor:

Select one or more view nodes in the Databases tab tree,

Choose from the right-click menu.Script View

You can also launch the dialog by dragging and dropping one or more nodes of the same type in an SQL

Commander editor.

If you just want to insert the object names in the editor, hold down the key (or the key on Mac Ctrl Alt

OS X) while dragging and dropping. This behavior can be reversed in , in the Tool Properties SQL

 category, so that dropping without pressing a key inserts the names and pressing the keyCommander

launches the dialog.

DbVisualizer 9.2 Users Guide

Page of 136 428

The Script dialog provides a choice of which type of statement to generate, options for formatting, use of

delimited identifiers, qualified names and statement delimiters. You can also pick an open SQL Commander or a

new as the destination, and where in the SQL Commander editor to insert the text.

DbVisualizer 9.2 Users Guide

Page of 137 428

1.

2.

7 Working with Procedures, Functions and Other

Code Objects
Many databases offer the capability to store custom code in the database, primarily as functions and procedures

, where a function has a return value but a procedure does not (a procedure may instead have output

parameters). In addition, some databases offer a package concept, which means that a collection of functions

and/or procedures are grouped together in one unit. A package is the interface describing the functions and

procedures, while the package body contains the implementation. Many databases also support triggers: code

that is executed when triggered by an event such as deleting a row in a table.

You can use DbVisualizer actions to create and drop procedural object of these types, and use the code editor

to browse, edit and compile these object types. Procedures and functions can also be executed in the SQL

Commander, with return values and parameters bound to DbVisualizer variables.

7.1 Creating a Function

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding

SQL in the .SQL Commander (see page 155)

To create a new function:

Expand nodes in the tree under the connection node in the tab tree until you reach the Databases

 node,Functions

Select the node and open the dialog from the right-click menu.Functions Create Function

DbVisualizer 9.2 Users Guide

Page of 138 428

1.

2.

3.

The details of the dialog depends on the database, but typically you need to:

Enter an object name,

Click the button in the area to add parameters,Add Parameters

Enter a name and data type for each parameter. For some databases you can also enter a direction (

typically IN, OUT, or INOUT) and a default value.

You can use the other buttons to the right of the parameter list to remove and move a parameter.

The dialog uses this information together with a simple sample body to compose a CREATE statement. For

most databases, you can not enter the real code in the action dialog. The real code is often complex and large,

so DbVisualizer provides a more powerful editing environment than would fit in a dialog via the Code Editor (see

. What you create with the assistant should be seen as a template that you then complete and work page 142)

with in the editor.

For some databases the sample code is editable because there is no way to write a generic sample that

compiles. You must then modify the template to something that is syntactically correct, but we still recommend

that you finish the real code in the Code Editor instead.

DbVisualizer 9.2 Users Guide

Page of 139 428

1.

2.

Click in the dialog to create the new function.Execute

7.2 Creating a Procedure

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding

SQL in the .SQL Commander (see page 155)

To create a new procedure:

Expand nodes in the tree under the connection node in the tab tree until you reach the Databases

 node,Procedures

Select the node and open the dialog from the right-click menu.Procedures Create Procedure

DbVisualizer 9.2 Users Guide

Page of 140 428

1.

2.

3.

The details of the dialog depends on the database, but typically you need to:

Enter an object name,

Click the button in the area to add parameters,Add Parameters

Enter a name and data type for each parameter. For some databases you can also enter a direction (

typically IN, OUT, or INOUT) and a default value.

You can use the other buttons to the right of the parameter list to remove and move a parameter.

The dialog uses this information together with a simple sample body to compose a CREATE statement. For

most databases, you can not enter the real code in the action dialog. The real code is often complex and large,

so DbVisualizer provides a more powerful editing environment than would fit in a dialog via the Code Editor (see

. What you create with the assistant should be seen as a template that you then complete and work page 142)

with in the editor.

DbVisualizer 9.2 Users Guide

Page of 141 428

1.

2.

1.

2.

3.

For some databases the sample code is editable because there is no way to write a generic sample that

compiles. You must then modify the template to something that is syntactically correct, but we still recommend

that you finish the real code in the Code Editor instead.

Click in the dialog to create the new procedure.Execute

7.3 Creating Other Code Objects

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding

SQL in the .SQL Commander (see page 155)

Some databases support other code object types in addition to function, stored procedure and trigger, e.g.

Package in Oracle and Module in Mimer.

To create a new database-specific code object:

Expand nodes in the tree under the connection node in the tab tree until you reach the group Databases

node for the code type, e.g. ,Packages

Select the grouping node and open the dialog from the right-click menu.Create

The details of the dialog depends on the database, but typically you need to:

Enter an object name,

Click the button in the area to add parameters,Add Parameters

Enter a name and data type for each parameter. For some databases you can also enter a direction (

typically IN, OUT, or INOUT) and a default value.

You can use the other buttons to the right of the parameter list to remove and move a parameter.

The dialog uses this information together with a simple sample body to compose a CREATE statement. For

most databases, you can not enter the real code in the action dialog. The real code is often complex and large,

so DbVisualizer provides a more powerful editing environment than would fit in a dialog via the Code Editor (see

. What you create with the assistant should be seen as a template that you then complete and work page 142)

with in the editor.

For some databases the sample code is editable because there is no way to write a generic sample that

compiles. You must then modify the template to something that is syntactically correct, but we still recommend

that you finish the real code in the Code Editor instead.

Click in the dialog to create the new code object.Execute

DbVisualizer 9.2 Users Guide

Page of 142 428

1.

2.

7.4 Editing a Code Object

Only in DbVisualizer Pro

This feature is only available in the Pro edition. In the Free edition, please execute the corresponding

SQL in the .SQL Commander (see page 155)

To edit the code for an object, such as a function, stored procedure or database-dependent code object:

Expand nodes in the tree under the connection node in the tab tree until you reach the node Databases

for the object you want to edit,

Double-click the node to open an tab for it, and select the editor sub tab (e.g., the Object View

 tab).Procedure Editor

The editor has a toolbar with various actions to save/compile the procedure, save and load the source to/from

file and perform common editing operations. The indicator shows whether the procedure is valid or Status

invalid based on last compilation (not available for all databases).

Edit the source code and save/compile the procedure when you are happy with the code, using the toolbarSave

button.

DbVisualizer 9.2 Users Guide

Page of 143 428

If errors occur, the corresponding text is underlined with a red wavy line. Hovering the mouse over the error

indication shows the corresponding error message. The right margin contains markers for each error as well,

and clicking on a marker scrolls the editor to the corresponding error. Alternatively, you can click on the icon for

an error message in the Log tab to move the caret to the error location.

If you prefer to navigate between errors using the keyboard, you can define key bindings for the Insertion Point

 and actions in the Tool Properties dialog, in the to Next Marker Insertion Point to Previous Marker Key

 category, in the Editor Commands group.Bindings

Error location information is not available for some databases. You then have to locate the incorrect

statement yourself based on the description of the error.

In addition to the indicator in the editor, the object icon in the tree shows a little red cross for invalid Status

procedures, for databases that provide this information. You can see this for the procedure UPDATE_STATUS

node in the screenshot above.

DbVisualizer 9.2 Users Guide

Page of 144 428

The figure below shows the result after correcting the errors and recompiling the procedure:

The status indicator now shows that the procedure is .VALID

7.5 Executing a Code Object

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

You can execute a code object, such as a function or stored procedure, either in the Code Editor (see page 142)

or in the .SQL Commander (see page 155)

Executing in the Code Editor (see page 145)

Executing in the SQL Commander (see page 145)

Using the Script Object Dialog (see page 147)

DbVisualizer 9.2 Users Guide

Page of 145 428

7.5.1 Executing in the Code Editor

In the Code Editor, click the button. DbVisualizer then generates a script for executing the code object, Execute

using variables for all parameters, and executes it.

Because the script contains variables, the dialog pops up. Enter values for all parameters and Variable Prompt

click to execute the procedure. The result is shown in the results area below the editor.Continue

In the example shown in the figure, all parameters are input parameters but DbVisualizer also support execution

of procedures with output parameters and functions returning a value. In this case, the generated script includes

 statements to write the result in the tab. Please see below for more details.@echo Log

7.5.2 Executing in the SQL Commander

The scripts generated and executed by the Code Editor can also be included in a script and executed in an SQL

Commander. Here's an example of a script calling a function and writing the result in the SQL Commander Log

tab:

DbVisualizer 9.2 Users Guide

Page of 146 428

@call ${STATUS||(null)||String||noshow dir=out}$ = "HR"."GET_STATUS"(1002);

@echo STATUS: ${STATUS}$;

In this example, the result value from the function is assigned to a variable named . Note GET_STATUS STATUS

that is has an option . This is a requirement for a variable that is assigned a value at runtime, whether dir=out

it is used for a return value from a function call or for an output parameter in a procedure call. It also has the

 option, to avoid getting prompted for a value for the variable. The value of the variable is then noshow STATUS

written to the log using the command.@echo

You can also use the output from one function or procedure as input to another, or even as a value in a

SELECT or other SQL statement:

@call ${STATUS||(null)||String||noshow dir=out}$ = "HR"."GET_STATUS"(1002);

@call "HR"."UPDATE_STATUS"(1000, 2000, ${STATUS||||String||noshow dir=in}$);

Note that is specified for the variable when it is used in the procedure call. dir=in STATUS UPDATE_STATUS

When you use a variable first for output and then as input with another command, you must change the @call

direction option like this.

More formally, the command has this syntax when calling a function:@call

@call <OutVariable> = <FunctionName>(<ParamList>)

where the <FunctionName> may need to be fully qualified with a schema (and/or catalog/database) and the <

ParamList> is a comma separated list of literal values or variables. Here's an example:

@call ${return_value||(null)||String||dir=out noshow}$ = get_some_value();

For a procedure, use this syntax:

@call <ProcedureName>(<ParamList)

where the <ProcedureName> may need to be fully qualified with a schema (and/or catalog/database) and the <

ParamList> is a comma separated list of literal values or variables. Here's an example:

@call my_process('literal input',

 ${var_in||(null)||String||dir=in}$,

 ${var_out||(null)||String||dir=out noshow}$,

 ${var_inout||'in_value'||String||dir=inout}$);

DbVisualizer 9.2 Users Guide

Page of 147 428

As shown in these examples, you must use the option to specify how the variable is to be used (in, out or dir

inout) and you may use the option to prevent being prompted for a value for an output variable.noshow

You can use the write the value assigned to an output variable to the log.@echo command (see page 208)

7.5.3 Using the Script Object Dialog

Instead of writing a script by hand in an SQL Commander, you can use the Script Object (e.g. @call Script

 or) right-click menu choices for the object node in the tree.Procedure Script Function

This opens the Script Object dialog where you select that you want to generate a CALL script and can adjust

settings for using delimiters and qualifiers, as well as the destination for the generated script.

DbVisualizer 9.2 Users Guide

Page of 148 428

1.

2.

3.

4.

7.6 Exporting a Code Object

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

To export a code object:

Select the object node in the tab tree,Databases

Open the Export Object dialog (e.g. or) from the right-click menu,Export Procedure Export Function

Select an , , and ,Output Format Output Destination Options

Click .Export

For these object types, you can select either the (CREATE statement) or Output Format and which SQL XML

delimiters to use in the Options area.

You can control whether to in the DDL and use delimited identifiers and/or qualified names (see page 276)

INSERT statements generated for the SQL format.

DbVisualizer 9.2 Users Guide

Page of 149 428

1.

2.

7.7 Scripting a Code Object

To open the Script Function/Procedure dialog, where you can insert generated text for a code object in an SQL

Commander editor:

Select one or more code object nodes in the Databases tab tree,

Choose from the right-click menu.Script Function/Procedure

You can also launch the dialog by dragging and dropping one or more nodes of the same type in an SQL

Commander editor.

If you just want to insert the object names in the editor, hold down the key (or the key on Mac Ctrl Alt

OS X) while dragging and dropping. This behavior can be reversed in , in the Tool Properties SQL

 category, so that dropping without pressing a key inserts the names and pressing the keyCommander

launches the dialog.

The Script dialog provides a choice of which type of statement to generate, options for formatting, use of

delimited identifiers, qualified names and statement delimiters. You can also pick an open SQL Commander or a

new as the destination, and where in the SQL Commander editor to insert the text.

DbVisualizer 9.2 Users Guide

Page of 150 428

1.

2.

3.

4.

1.

2.

3.

8 Working with Schemas
DbVisualizer provides many ways to work with schemas.

8.1 Creating a Schema

To create a new schema:

Locate the node in the Databases tab tree,Schemas

Open the dialog from the right-click menu,Create Schema

Enter all required information (database dependent),

Click to create the schema.Execute

This feature is only available for some databases. Please execute the corresponding SQL in the SQL

 if it is not available for your Commander (http://confluence.dbvis.com/display/UG91/Working+with+SQL)

database.

8.2 Comparing Schemas

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

You can compare different aspects of a schema to another schema.

For instance, to compare the list of tables in one schema with the list of tables in another schema:

Double-click the schema node for the first schema to open its Object View tab and select the tab,Tables

Do the same for the second schema,

Select from the right-click menu in one of the Tables tabs to Compare compare their grid content (see

.page 258)

You can do the same for all the other schema object types, such as views and stored procedures. You can also

dig deeper and compare the individual objects, such as .comparing individual tables (see page 121)

http://confluence.dbvis.com/display/UG91/Working+with+SQL
http://confluence.dbvis.com/display/UG91/Working+with+SQL

DbVisualizer 9.2 Users Guide

Page of 151 428

1.

2.

3.

8.3 Viewing Entity Relationships

To see how a table is related to other tables through Foreign Keys:

Locate the node in the tab tree,Tables Databases

Double-click the node to open its tab,Object View

Select the sub tab.References

You can select among different graph layouts in the layout drop-down list in the toolbar: , , Hierarchic Organic

, or .Orthogonal Circular

Other layout settings can be changed in the area, which is shown or hidden with the settings Graph Control

toggle button in the toolbar. For instance, you can select how much information to include for each table in the

graph: just the , the column(s) or all .Table Name Primary Key Columns

DbVisualizer 9.2 Users Guide

Page of 152 428

1.

2.

3.

4.

The graph can be to a file in , , , or or as a Graph Modeling Language (Exported JPG GIF PNG SVG PDF Saved

) file that you can then open in the tool from yWorks GML yEd (http://www.yworks.com/en/products_yed_about.html)

for further manipulation.

You can control whether the table names should be in the qualified with the schema/catalog (see page 276)

graph.

8.4 Exporting a Schema

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

You can export all or selected objects in a schema using the Export Schema assistant.

Output Format (see page 152)

Output Destination (see page 153)

Object Types (see page 153)

Options (see page 153)

Using Variables in Fields (see page 153)

Saving And Loading Settings (see page 154)

To export a schema:

Select the schema node in the tab tree,Databases

Launch the assistant from the right-click menu,Export Schema

Select an , , to export and ,Output Format Output Destination Objects Options

Click .Export

8.4.1 Output Format

You can export objects in one of these formats: , , , , (Excel), or .CSV HTML SQL XML XLS JSON

The , , and formats are specifically for table data and are not supported for any other typeCSV HTML XSL JSON

of objects.

The and formats can be used for all objects to export the DDL, and for tables you can also choose to SQL XML

include the table data in these formats.

You can control whether to in the DDL and use delimited identifiers and/or qualified names (see page 276)

INSERT statements generated for the SQL format.

http://www.yworks.com/en/products_yed_about.html

DbVisualizer 9.2 Users Guide

Page of 153 428

8.4.2 Output Destination

The destination can be one of:

a file,

an open or new SQL Commander tab, with options for where in an open SQL Commander to insert the

result,

to the system clipboard.

8.4.3 Object Types

In the area you select what to export. You can check the checkbox for an object type to export all Object Types

objects of that type, or expand a type node and select individual objects.

8.4.4 Options

The options depend on the selected Output Format.

For the SQL and XML formats, you can choose to export the DDL, the DDL for indexes for a table and the table

data: as INSERT statements for the SQL statement or in one of three XML formats.

For the XLS format, you can choose to export table data as either regular Binary Excel or OOXML for Excel

2007 and later.

Most formats also let you specify other options, such as delimiters, title and descriptions. Just select an Output

Format to see which options are available.

You can also adjust the specifically for the exported table data. By default, the formats defined in Data Formats

 are used, but sometimes you need to export dates and numbers in a different format because Tool Properties

you intend to import the data into a different type of database.

In the dialog you can also specify how to quote text data and how to handle quotes Data Format Settings

within the text value.

8.4.5 Using Variables in Fields

You can use some of the (, pre-defined DbVisualizer variables (see page 221) ${dbvis-date}$ ${

, , , and dbvis-time}$ ${dbvis-timestamp}$ ${dbvis-connection}$ ${dbvis-database-type}$ ${

) in all fields that hold free text (e.g. title and description fields) and as part of the file name dbvis-object}$

field.

DbVisualizer 9.2 Users Guide

Page of 154 428

Use the variable as part of the filename if you want to export the DDL and/or data to a ${dbvis-object}$

separate file for each object. The variable is replaced with the object type and object name, e.g. ${

 becomes for a table named COUNTRIES.dbvis_object}$.sql table_COUNTRIES.sql

8.4.6 Saving And Loading Settings

If you often use the same settings, you can save them as the default settings for this assistant. If you use a

number of common settings, you can save them to individual files that you can load as needed. Use the Settings

button menu to accomplish this:

Save as Default Settings

Saves all format settings as default. These are then loaded automatically when open an Export Schema

dialog

Use Default Settings

Use this choice to initialize the settings with default values

Remove Default Settings

Removes the saved defaults and restores the regular defaults

Load

Use this choice to open the file chooser dialog, in which you can select a settings file

Save As

Use this choice to save the settings to a file

Copy Settings to Clipboard

Use this choice to copy all settings to the system clipboard. These can then be pasted into the SQL

Commander to define the settings for the @export editor commands.

8.5 Filtering Schemas in the Tree

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

If you have many schema in the tree, it may be hard to find the ones of most interest. You can then define a

filter so that only a few schemas are shown, as described in .Filtering Database Objects (see page 49)

DbVisualizer 9.2 Users Guide

Page of 155 428

9 Working with SQL
With DbVisualizer, you can use a powerful SQL editor or a graphical Query Builder to create and edit your

scripts, save them as Bookmarks for easy access, and execute all or just a few of the statements, and lots more.

9.1 Selecting Database Connection, Catalog and Schema

You use the and (or Catalog) lists above the editor to specify which Database Connection Database

connection and database to use when executing the SQL in the SQL Commander. The list of connections

shows all connections as they are ordered in the Databases tab tree, except that all currently active connections

are listed first.

If you check the box above the Database Connection, the current connection selection will not change Sticky

automatically when passing SQL statements from other parts of DbVisualizer, for instance, when opening a

. Consider an Bookmark defined for database connection . If the Sticky Bookmark (see page 185) ProdDB

checkbox is not checked (i.e., disabled), the database connection is automatically changed to when youProdDB

open the Bookmark in the SQL Editor. However, if the Sticky checkbox is checked (i.e., enabled), the current

database connection setting is unchanged. You can specify if you want to have Sticky enabled by default in the

Tool Properties dialog, in the category under the General tab.SQL Commander

The list (or Catalog) defines which catalog in the connection is the target for the execution. Since not Database

all databases use catalogs, this list may be disabled.

For most databases, the schema selected in the list is used to limit the tables the Auto Schema only

Completion feature shows in the completion pop-up; it does define a default schema for tables referenced in not

the SQL, because most databases do not allow the default schema to be changed during a session.

For the databases that do allow the default schema to be changed, however, the selected schema is also used

as the default schema, i.e., the schema used for unqualified table names in the SQL. Currently, the databases

that support setting a default schema are DB2 LUW, DB2 z/OS, DB2 iSeries, H2, JavaDB/Derby, Oracle,

NuoDB, PostgreSQL, and Vertica.

If you don't want the selected schema to be used as the default schema for these database, you can disable this

behavior in the tab for the connection, in the category.Properties SQL Commander

DbVisualizer 9.2 Users Guide

Page of 156 428

9.2 Editing SQL Scripts

The SQL Commander contains an SQL editor, used to edit SQL scripts.

Syntax Color Coding (see page 157)

Charsets and Fonts (see page 159)

Loading and Saving Scripts (see page 159)

Drag and Drop a File (see page 160)

Drag and Drop Database Objects (see page 160)

Loading and Saving Bookmarks and Monitors (see page 162)

Navigating Between History Entries (see page 162)

Confirming Overwriting Unsaved Changes (see page 162)

SQL Formatting (see page 162)

Auto Completion (see page 164)

Recording and Playing Edit Macros (see page 168)

Folding Selected Text (see page 169)

Selecting a Rectangular Area (see page 170)

Tab Key Treatment (see page 170)

Key Bindings (see page 170)

The editor area looks like this:

Above the editor is a toolbar with buttons related both to execution of scripts and to editing. The editing related

buttons are covered below.

The left margin shows the line numbers.

Below the editor, you see a Status Bar. The first field shows the current caret position in the format:

<line>:<column> [<position from top>]

DbVisualizer 9.2 Users Guide

Page of 157 428

The last figure, within square brackets, is the caret position from the top. This can be useful when you get an

error message executing a script that contains this information rather than a line/column location.

The next field in the Status Bar shows INS if characters you type will be inserted at the caret position or OVR if

they will overwrite the current text at the caret position. You can toggle this mode using the Toggle Typing

 keyboard shortcut, by default bound to the key.Mode Insert

The next field shown in the screenshot is only visible when working with macros, described in the Recording and

 section.Playing Edit Macros (see page 168)

Next comes the Auto Commit Status field, showing whether is enabled.Auto Commit (see page 183)

The last two fields show information about the file loaded in the editor, if any. First the character encoding and

then the filename. If you just type into the editor without loading a file, the filename "Untitled" is shown instead.

An asterisk after the filename indicates that there are unsaved edits.

The SQL Editor is like any editor you're used to when it comes to typing, scrolling etc. But it also offers

additional features to help you specifically with editing SQL scripts. These are described in the following sections

.

9.2.1 Syntax Color Coding

An SQL script consists of keywords, operators, object identifiers, quoted text, etc. It may also contain comments.

To make it easier to see at a glance what is what, the SQL Editor displays words using different font styles

depending on their classification. For instance, keywords are displayed with a bold blue font, while quoted text is

displayed with a regular type red font.

You can change how to display the different kinds of words, as well as the editor selection background color, the

current line highlight color and the editor background color, in the dialog, in the Tools->Tool Properties

 category.Appearance/Fonts

DbVisualizer 9.2 Users Guide

Page of 158 428

The editor uses the Tool Properties settings from the category under the GeneralSQL Commander/Comments

tab to detect comments.

DbVisualizer 9.2 Users Guide

Page of 159 428

9.2.2 Charsets and Fonts

You can also change the SQL Editor font family, which is useful and necessary in order to display characters for

languages like Chinese, Japanese, etc., in in the category to set the font Tool Properties Appearance/Fonts

for the SQL Editor.

9.2.3 Loading and Saving Scripts

The SQL editor supports loading statements from a file and saving the content of the editor to a file. Use the

standard file operations, , and in the main menu or the main toolbar to accomplish this.Open Save Save As File

Loading a file loads it into a new tab or activates the tab that already holds it.SQL Commander

The name of the loaded file is listed in the status bar of the editor, with the full file path shown in the window title.

The editor tracks any modifications and indicates changes with an asterisk (*) after the filename. When you

close the SQL Commander tab or exit DbVisualizer, you are asked what to do if there are any pending edits that

need to be saved.

DbVisualizer 9.2 Users Guide

Page of 160 428

The submenu lists the recently loaded files. How many recent files to keep track of can be File->Open Recent

specified in the Tool Properties dialog, in the category under then General tab.SQL Commander

You can also use the feature to open recent files as well as Bookmarks and History entries. ByQuick File Open

default, it is bound to the key combination, and is also available via a main toolbar button as well as Ctrl+Alt+O

in the main menu.File->Quick File Open

9.2.4 Drag and Drop a File

You can also select a file in the platform's file browser and drop it somewhere in the DbVisualizer window. If you

drop it in an editor, the file content is inserted at the caret position in the editor. If you instead drop it in the

toolbar area, the file is opened in a new tab.SQL Commander

9.2.5 Drag and Drop Database Objects

If you want to include an object shown in the database objects tree, you can select the node and drop it in the

editor where you want it inserted. The dialog is shown where you can select exactly what you Script Object

want to insert in the editor.

DbVisualizer 9.2 Users Guide

Page of 161 428

First of all, you can select to insert an SQL statement based on the dropped object, e.g. a SELECT statement or

a CREATE statement. You can also choose to just insert the object name. The choices available depends on

the type of object you drop.

In the area, you can opt to format the SQL before it is inserted and use qualifiers and quoted identifiers,Options

and even change which statement delimiter to use.

The is set to the SQL Commander tab you dropped the object on by default, but you can Output Destination

change your mind and pick another destination. If you stick with an as the destination, you SQL Commander

can tell where in the editor to insert the text.

You can also open this dialog from the tab, from the object's right-click menu.Databases

If you just want to insert the object names in the editor, hold down the key (or the key on Mac Ctrl Alt

OS X) while dragging and dropping. This behavior can be reversed in , in the Tool Properties SQL

 category, so that dropping without pressing a key inserts the names and pressing the keyCommander

launches the dialog.

DbVisualizer 9.2 Users Guide

Page of 162 428

9.2.6 Loading and Saving Bookmarks and Monitors

Bookmarks and Monitors are also files, but with special meaning. See the Managing Frequently Used SQL (see

 for how to create and edit them in the SQL Editor.page 185)

9.2.7 Navigating Between History Entries

When you execute a script, DbVisualizer saves it as a history entry, see the Re-Executing SQL Statements (see

 section for details. You can use the and buttons in the editor toolbar to navigate page 175) Previous Next

between (load) these entries.

9.2.8 Confirming Overwriting Unsaved Changes

By default, you have to confirm overwriting unsaved changes in an editor, e.g. when navigating between history

entries, and when closing an SQL Commander tab with unsaved edits. You can disable these confirmation

popups in the Tool Properties dialog, under the category under the General tab.SQL Commander

9.2.9 SQL Formatting

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

DbVisualizer 9.2 Users Guide

Page of 163 428

The menu contains four operations for formatting SQL statements.SQL->Format SQL

Format Buffer formats the complete editor content and formats the current SQL (at cursor Format Current

position).

The formatting is done according to the settings defined in the Tool Properties dialog, in the SQL Editor/SQL

 category under the General tab. There are many things you can configure. After making some Formatting

changes, press and format again to see the result.Apply

Here is an example of an SQL statement before formatting:

select

CompanyName, ContactName, Address,

City, Country, PostalCode from

Northwind.dbo.Customers OuterC

where CustomerID in (select top 2 InnerC.CustomerId

from Northwind.dbo.[Order Details] OD

join Northwind.dbo.Orders O on OD.OrderId = O.OrderID

join Northwind.dbo.Customers InnerC

on O.CustomerID = InnerC.CustomerId

Where Region = OuterC.Region

group by Region, InnerC.CustomerId

order by sum(UnitPrice * Quantity * (1-Discount)) desc)

order by Region

And here is the same statement after formatting has been applied with default settings:

SELECT

 CompanyName,

 ContactName,

 Address,

 City,

 Country,

 PostalCode

FROM

 Northwind.dbo.Customers OuterC

WHERE

 CustomerID in

 (

 SELECT

 top 2 InnerC.CustomerId

 FROM

 Northwind.dbo.[ORDER Details] OD

 JOIN

 Northwind.dbo.Orders O

 ON

 OD.OrderId = O.OrderID

 JOIN

 Northwind.dbo.Customers InnerC

 ON

DbVisualizer 9.2 Users Guide

Page of 164 428

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

 O.CustomerID = InnerC.CustomerId

 WHERE

 Region = OuterC.Region

 GROUP BY

 Region,

 InnerC.CustomerId

 ORDER BY

 SUM(UnitPrice * Quantity * (1-Discount)) DESC)

ORDER BY

 Region

Copy Formatted and are powerful tools for copying SQL statements between programs Paste Formatted

written in languages like Java, C#, PHP, VB, etc. and the SQL Editor. Both operations display a dialog where

you can adjust some of the formatting options, most importantly the option and the Target SQL SQL is

option. can be set to a number of common programming language formats.Between Target SQL

For instance, to copy an SQL statement and paste it as Java code for adding it to a Java StringBuffer:

Select the statement,

Choose ,SQL->Format SQL->Copy Formatted

Set to Java StringBuffer,Target SQL

Click to place the formatted statement on the system clipboard,Format

Paste it into your Java code.

To copy a statement wrapped in code from a program:

Select the code containing an SQL statement in your program,

Copy it to the system clipboard,

Choose ,SQL->Format SQL->Paste Formatted

Check and enter the character enclosing the SQL statement in the code,SQL is Between

Click to extract the SQL statement and paste the formatted SQL in the editor.Format

9.2.10 Auto Completion

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Auto completion is a convenient feature used to assist you when editing SQL statements and DbVisualizer

commands.

DbVisualizer 9.2 Users Guide

Page of 165 428

With the caret in any place in a statement where you can type something other than a table name or a column

name, and at least one character just before the caret, activating auto completion displays a list of keywords that

starts with the letters you have typed so far. As you continue to type, the list narrows.

The list of keywords is database specific, selected based on the database type for the connection currently

selected in the list above the editor.Database Connection

With the caret placed where a table or view name may be typed in a supported SQL statement type, the auto

completion list shows a list of tables and views from the currently selected database connection, assuming you

are actually connected to the database. The following figure shows the completion pop up with table names.

A completion pop-up showing column names is shown when the caret is placed where a column name may be

typed.

DbVisualizer 9.2 Users Guide

Page of 166 428

DbVisualizer provides auto completion for table and columns names for the following DML commands:

SELECT

INSERT

UPDATE

DELETE

Auto completion for DbVisualizer commands is very similar. Activating it after a partial command name lists all

matching commands. If you activate it after a complete command name, you get a list of all valid parameters for

the command. After a parameter name, you can select from a list of valid values.

For the command, the parameter list is adapted for the specified output format after you have @export set

entered the parameter setting, for instance only showing parameters that are valid for the CSV format.Format

DbVisualizer 9.2 Users Guide

Page of 167 428

To display the completion pop-up, use the key binding (by default). You select an entry in the Ctrl-SPACE

pop-up menu with a mouse double-click, the key, or the key. To cancel the pop-up, press the ENTER TAB ESC

key.

If there are several SQL statements in the editor then make sure to separate them using the statement

delimiter character (default to ";").

In order for the column name completion pop-up to appear, you must first make sure there are table

names in the statement.

All table names that has been listed in the completion pop-up are cached by DbVisualizer to make sure

subsequent displays of the pop-up is performed quickly without asking the database. The cache is

cleared only when doing a in the database objects tree or reconnecting the database Refresh

connection.

The and lists above the editor is used to assist the auto completion feature to limit Database Schema

which tables to list in the pop-up.

It is possible to fine-tune how auto completion shall work in the connection properties.

Enable or disable the use of identifier qualifiers (i.e. qualifying table names with the schema name) in the

 category,[Database Type]/Qualifiers

Enable or disable the use of delimited identifiers (e.g. quotes around a table name) in the [Database

 category.Type]/Delimited Identifiers

Sorting, when to show the popup, etc. can be configured in the Tool Properties dialog, in the SQL Editor/Auto

 category under the General tab.Completion

DbVisualizer 9.2 Users Guide

Page of 168 428

1.

2.

3.

4.

5.

6.

7.

8.

9.

9.2.11 Recording and Playing Edit Macros

If you repeatedly need to run a sequence of edit operation, you can record them as a macro and play it as many

times as needed during an editing session. The editor status bar indicates when a recording is in progress and

when a macro is available to play.

As an example, suppose you have some plain text that you need to convert into INSERT statements:

12345 123456

89012 890123

45678 456789

Place the caret at the beginning of the first line and start the macro recording, using the right-click menu or the

corresponding key binding, and then type text and use key bindings (or menu items) to perform the following

operations:

Type insert into mytable values('

Insertion Point to End of Word

Type ',

Insertion Point to Next Word

Type '

Insertion Point to End of Word

Type ');

Insertion Point Down

Insertion Point to Beginning of Line

Then stop the recording. You now have a macro for converting a single line to an INSERT statement. To convert

the remaining lines, just use Play Macro for each line. The result will look like this:

insert into mytable values('12345', '123456');

insert into mytable values('89012', '890123');

insert into mytable values('45678', '456789');

The Find operation, by default mapped to the key and key stroke, can not be recorded. Find Ctrl-F

You must instead use , , and . Mouse Find Selection Find with Dialog Find Next Find Previous

gestures are also not recorded, only key strokes and menu selections.

DbVisualizer 9.2 Users Guide

Page of 169 428

9.2.12 Folding Selected Text

If you work with a large script, it can sometimes be helpful to hide parts of it. You can do so using the Code

Folding feature.

Select the text you want to hide and then choose in the right-click menu. The selected Toggle Fold Selection

text is then replaced (visually only) with a folding marker.

Here's an unfolded script:

And here is the same script with the CASE expression folded:

DbVisualizer 9.2 Users Guide

Page of 170 428

You can fold more than one part of a script using the same procedure.

To unfold just one part, select the folding marker (be careful to select all of it) and then choose Toggle Fold

 from the menu again. To unfold all folded parts, use .Selection Expand All Foldings

9.2.13 Selecting a Rectangular Area

In some cases, it is handy to be able to select a rectangular area in the middle of a script. Say, for instance, that

you need to copy just the first part of a few lines and paste it at the beginning of some other lines.

To do this in the SQL editor, click the mouse where you want to start the selection and then press the key Alt

while you extend the selection by dragging the mouse.

9.2.14 Tab Key Treatment

Pressing the TAB key in the editor inserts four space characters by default. If you instead want a TAB character

to be inserted, or want to insert another number of space characters, you can specify this in the Tool Properties

dialog, in the category under the General tab.SQL Commander

9.2.15 Key Bindings

The editor shortcuts, or key bindings, can be redefined in the dialog, in the Tool Properties Key Bindings

category under the General tab. Expand the node to manage all editor actions and the Editor Commands Main

 node to manage the key bindings for the edit operations in the right-click editor menu and the main Menu/Edit

window menu.Edit

9.3 Using Editor Templates

Editor Templates can be used to easily insert text that you often use, such as code snippets, current date and

time, or anything you like.

Using a Template (see page 171)

Creating a new Template (see page 172)

DbVisualizer 9.2 Users Guide

Page of 171 428

Editing or Deleting a Template (see page 172)

Changing the Expand Keybinding (see page 173)

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

9.3.1 Using a Template

A template is an that can easily be replaced by its , and it may optionally have a Abbreviation Expanded Text

.Description

To expand a template, just type a few characters that at least partially match one or more template abbreviation

and press the TAB key. This displays a list of matching templates that you can pick from, along with the

description or a part of the corresponding expanded text for each.

When you select a template by pressing the TAB or ENTER key, its expanded text replaces the abbreviation

you typed in the editor.

DbVisualizer 9.2 Users Guide

Page of 172 428

1.

2.

3.

4.

1.

2.

3.

4.

5.

1.

You can also enable to immediately expand the text if you have typed enough of the Immediate Substitution

abbreviation to match a single template when you press the TAB key:

Open ,Tools->Tool Properties

Select the category,General/SQL Commander/Editor Templates

Click the checkbox in the toolbar,Immediate Substitution

Click the or button to save the updated setting.Apply OK

Instead of pressing the TAB key to list matching templates, you can use the entry in Show Editor Templates

the main Edit menu or the editor right-click menu.

9.3.2 Creating a new Template

DbVisualizer comes with some default templates, but you can create additional templates:

Open ,Tools->Tool Properties

Select the category,General/SQL Commander/Editor Templates

Click the button in the toolbar to add a new template, and enter an Abbreviation, Expanded Text, Insert

and optionally a Description,

Check off the checkbox in the column if you wan the Expanded Text to be formatted by the SQL Format

Formatter when it is inserted in the editor,

Click the or button to save the new templates.Apply OK

If you want to use an existing template as a starting point, you can select it and then click the button Duplicate

instead of the Insert button. The Edit in Window button opens the selected cell in a separate window where it is

easier to work with larger templates.

9.3.3 Editing or Deleting a Template

You can edit any piece of a template or delete templates you no longer need:

DbVisualizer 9.2 Users Guide

Page of 173 428

1.

2.

3.

4.

5.

Open ,Tools->Tool Properties

Select the category,General/SQL Commander/Editor Templates

To edit, double-click any cell you want to change and edit its value,

To delete a template, select any of its cells and click the Delete button,

Click the or button to save the changes.Apply OK

9.3.4 Changing the Expand Keybinding

The keyboard shortcut used to expand a template, or bring up the list of matching templates if more than one, is

the TAB key. You can add other shortcuts or change the default, as described in Changing Keyboard Shortcuts (

. The shortcut is named and you find it in the category.see page 44) Show Editor Templates Main Menu/Edit

9.4 Executing SQL Statements

In the SQL Commander, you can execute one or multiple statements. You can also control if the execution

should stop or continue when the execution of a statement results in a warning or error.

Execute Multiple Statements (see page 173)

Execute Only the Current Statement (see page 174)

Control Execution after a Warning or an Error (see page 174)

9.4.1 Execute Multiple Statements

Use the main menu operation to execute the SQL in the SQL Commander editor. The SQL SQL->Execute

Commander executes the statements one by one and indicates the progress in the log area. The currently

selected Database Connection is used for all statements. The SQL Commander does not support executing

SQLs for multiple database connections in one batch.

DbVisualizer uses the delimiters specified in the Tool Properties dialog, in the SQL Commander/Statement

 category under the General tab, to separate one statement from the next.Delimiters

The result of the execution is displayed in the results area based on the type of results result(s) that are returned

. If there are several results and an error occurred in one of them, the Log tab is automatically displayed to

indicate the error.

If you select a statement in the SQL editor and choose main menu option, only the selected SQL->Execute

statement is executed. This is a useful feature when you have several SQL statements in the SQL editor and

you just want to execute one or a few of the statements.

Comments in the SQL editor are sent to the database when you use SQL->Execute, unless you have

enabled in the menu.Strip Comments when Executing SQL Commander

DbVisualizer 9.2 Users Guide

Page of 174 428

9.4.2 Execute Only the Current Statement

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

The operation is useful when you have a script with several SQL statements. It lets youSQL->Execute Current

execute the statement at the cursor position without first having to select the SQL statement. The default key

binding for execute current is (Ctrl-.).Ctrl-PERIOD

Execute Current determines the actual statement by parsing the editor buffer using the standard

statement delimiters.The current statement is the statement containing the caret or that ends on the

line with the caret. This means that the caret may be after the statement delimiter as long as there is

no other statement on the same line.

If you are unsure what the boundaries are for the current statement then use Edit->Select Current

. This will highlight the current statement without executing it.Statement

9.4.3 Control Execution after a Warning or an Error

You can control whether subsequent statements should be executed when a statement results in a warning or

an error.

Open and select the category under the tab. There you Tools->Tool Properties SQL Commander General

find and check boxes for enabling these features in all tabsStop on Error Stop on Warning SQL Commander

.

Alternatively, you can use DbVisualizer client side commands to enable or disable these features in a script.

@stop on error;

@stop on warning;

@continue on error;

@continue on warning;

DbVisualizer 9.2 Users Guide

Page of 175 428

9.5 Re-Executing SQL Statements

As you execute SQL statements in the SQL Commander, DbVisualizer saves them as History entries, along with

information about the Connection, Catalog, Schema and the execution result. This makes it easy to locate

statements and scripts you have executed in the past.

Using Previous and Next in the SQL Commander (see page 175)

Using the SQL History Window (see page 175)

Reusing a History Entry (see page 176)

Saving a History Entry as a Bookmark or Other File (see page 176)

Using Quick Load (see page 176)

9.5.1 Using Previous and Next in the SQL Commander

If you just want to go back and forth between statements you have executed recently, you can use the Get

 and toolbar buttons in the SQL Commander.Previous from History Get Next from History

9.5.2 Using the SQL History Window

To look through all saved statements, you can display the History entries by clicking the toolbar SQL History

button in the main window or select the corresponding operation from the menu.Tools

DbVisualizer 9.2 Users Guide

Page of 176 428

The entries are ordered with the most recently executed entries at the top by default, but you can reorder them

by clicking on the column headers. The complete content of the selected entry is shown below the list, unless

you disable it by clicking the Show Details toolbar button.

The columns show when the entry was executed, a part of the script/statement, the size of the complete

statement/script, and then the database type and connection it was executed for, and how long it took to

execute. The and columns show how many of the statements in a script were executed Success Errors

successfully or that caused an error. Finally, the column show the number of rows retrieved or affected byRows

the script.

You can use the field at the top right corner in the dialog to search for entries matching a critera. Clicking on the

magnifying glass reveals a configuration menu where you can, among other things, specify which columns to

search in and if you want to search through the complete script rather than just the part of the script shown in

the Script/SQL Statement column.

In the Tool Properties dialog, in the category under the General tab, you can specify that SQL History

sequential executions of the same SQL statement/script should be collected into a single history entry. When

this feature is enabled, the field number is increased for each execution. In the same Tool Properties Count

category you can also specify rules for when not to create a history entry.

Reusing a History Entry
When you have found the entry you're looking for, you can open it in an SQL Commander by double-clicking it

or clicking the corresponding toolbar button.

You can also add the content of an entry to the current content of an SQL Editor. Select the entry in the list, drag

it with the mouse key depressed to the position in the editor where you want to add it, and drop it there by

releasing the mouse button.

Saving a History Entry as a Bookmark or Other File
If you realize that you need easy access to a History entry in the future, you can save it is as a Bookmark or

other file. Just select the entry and use the operation, or just drag it to the tree and drop it.Save As Bookmarks

You can also locate the file holding the history entry in the file system using the the Open Enclosing Directory

right-mouse menu entry or toolbar button. This opens a file chooser for the directory holding the file.

9.5.3 Using Quick Load

An alternative to locating Bookmarks in the Scripts tab and History entries in the History window is to use the

 feature, by default bound to the key combination. It is also available via a main toolbar Quick Load Ctrl+Alt+O

button as well as in the menu.File->Quick File Open

DbVisualizer 9.2 Users Guide

Page of 177 428

The Quick Load feature locates files with partly matching names from the categories you have selected, as you

type. You can use an asterisk ("*") as a wildcard in the search string. Use the field to limit the number of Max

matching files to display in the list.

When you see the file you're looking for, just select it and click to load it into an SQL Commander editor. IfEnter

the file is already loaded in an editor, that tab is made visible instead.

9.6 Executing Complex Statements

If you need to execute a complex statement that itself contains other statements in the SQL Commander, such

as a CREATE PROCEDURE statement, you need to help DbVisualizer figure out where the complex statement

starts and ends. The reason is that DbVisualizer needs to send statements to the database for execution one by

one.

We recommend that you use the dialog and Create Procedure (see page 139) Procedure Editor (see

 to work with procedures and similar objects, so only use the SQL Commander to run page 142)

statements like this if these features do not work for you for some reason.

Using Execute Buffer (see page 178)

Using an SQL Block (see page 178)

Using the @delimiter command (see page 178)

DbVisualizer 9.2 Users Guide

Page of 178 428

9.6.1 Using Execute Buffer

The operation sends the complete editor buffer for execution as one statement. No SQL->Execute Buffer

comments are removed and no parsing of individual statements based on any delimiters is made. You can use

this feature if the complex statement is the only statement in the SQL Commander editor.

9.6.2 Using an SQL Block

To tell DbVisualizer that a part of a script should be handled as a single statement, you can insert an SQL block

begin identifier just before the block and an end identifier after the block. The delimiter must be the only text on

the line. The default value for the is and for the it is .Begin Identifier --/ End Identifier /

Here is an example of an SQL block for Oracle:

--/

script to disable foreign keys

declare cursor tabs is select table_name, constraint_name

 from user_constraints where constraint_type = 'R' and owner = user;

begin

 for j in tabs loop

 execute immediate ('alter table '||j.table_name||' disable constraint'||j.constraint_name);

end loop;

end;

/

9.6.3 Using the @delimiter command

With the command you can temporarily change the statement delimiter DbVisualizer uses to @delimiter

separate the statements and send them one by one to the database. Use it before the complex statement, and

after the statement if the script contains additional statements. Here's an example:

@delimiter ++;

CREATE OR REPLACE FUNCTION HELLO (p1 IN VARCHAR2) RETURN VARCHAR2

AS

BEGIN

 RETURN 'Hello ' || p1;

END;

++

@delimiter ;++

@call ${returnValue||(null)||String||noshow dir=out}$ = HELLO('World');

@echo returnValue = ${returnValue}$;

DbVisualizer 9.2 Users Guide

Page of 179 428

The first @delimiter command sets the delimiter to so that the default delimiter can be used within the ++ ;

function body in the CREATE statement. The delimiter is then used to end the CREATE statement, and ++

another command sets the delimiter back to for the remaining commands in the script.@delimiter ;

9.7 Executing an External Script

If you have a very large script to execute, you may not have enough memory available to be allocated for

DbVisualizer to load it into an SQL Commander editor and generate log entries in the GUI for all statements.

For a script that is large but still small enough to load into the SQL Commander, you can save memory (and

therefore run it faster and more efficiently) by selecting to log to a file instead of the GUI:

To save even more memory, you can use the command to execute it by only loading one statement at a @run

time, minimizing the memory requirements. A related command is the command for changing the current @cd

directory.

@run <file> [<variables>]

Request to execute the file specified as parameter, optionally with a list of variables

@cd <directory>

Change the working directory for the following command@run

Here's an example of a script using these commands:

@run createDB.sql; -- Execute the content in the

 -- createDB.sql file without loading into the SQL editor.

 -- The location of this file is the same as the working

 -- directory for DbVisualizer.

@cd /home/mupp; -- Request to change directory to /home/mupp

@cd myscripts; -- Request to change directory relative to current, i.e. to /home/mupp/

myscripts

@run loadBackup.sql; -- Execute the content in the loadBackup.sql

 -- file relative to current directory. This file will now be read from the

 -- /home/mupp/myscripts directory.

You can also include as parameters to the command, with values DbVisualizer variables (see page 221) @run

to be used for the corresponding variables in the script:

@run monthlyReport ${month||2010-05-05||Date||noshow}$ ${dept||HR||String||noshow}$

Even though the @run command reads one statement at a time from the file, there are other parts of the

execution process that require the whole file to be read before the statements can be executed: parsing the

DbVisualizer 9.2 Users Guide

Page of 180 428

script for variables, parameter markers, and restricted commands, as well as counting all statements in order to

provide progress information. When you run a script that is large enough (more than 10 MB) for these things to

potentially cause memory problems and slow down the processing, DbVisualizer gives you a chance to turn off

this preprocessing and progress reporting so that the statements instead can be executed directly as the are

read from the file, one at a time.

To ensure that you don't have any problems running scripts this large, you must specify a file for logging. We

also strongly recommend that you click , thereby disabling all variable, parameter Continue w/o Preprocessing

and restricted commands processing. Only click if you know for sure that you have enough Continue Normally

memory available and have adjusted your installation so that DbVisualizer can use it. With the preprocessing

disabled and all logging going to a file instead of the GUI, you should be able to execute scripts of any size (we

have tested with scripts as large as 4 GB).

Another alternative for execution of large scripts is to use the DbVisualizer command line interface (see page

 instead of the GUI application. This option is the most efficient and fastest.311)

Running without preprocessing is always more efficient, so if your script does not use any variables or

parameter markers and you do not use the Permissions feature, you can disable preprocessing even for scripts

smaller than 10 MB by unchecking the checkbox shown in the log destination screenshot Preprocess script

above.

9.8 Locating SQL Errors

If errors occur, the corresponding text is underlined with a red wavy line. Hovering the mouse over the error

indication shows the corresponding error message. The right margin contains markers for each error as well,

and clicking on a marker scrolls the editor to the corresponding error. Alternatively, you can click on the icon for

an error message in the Log tab to move the caret to the error location.

If you prefer to navigate between errors using the keyboard, you can define key bindings for the Insertion Point

 and actions in the Tool Properties dialog, in the to Next Marker Insertion Point to Previous Marker Key

 category, in the Editor Commands group.Bindings

DbVisualizer 9.2 Users Guide

Page of 181 428

1.

2.

3.

Error location information is not available for some databases. You then have to locate the incorrect

statement yourself based on the description of the error.

9.9 Analyzing (explain) Query Performance

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

You can analyze how a query is executed by the database, e.g. whether indexes are used or if the database has

to do an expensive full scan. To analyze a query:

Enter the query in the editor,SQL Commander

Click button in the toolbar,Execute Explain Plan

Look at the result in the results area.

Explain Plan is supported for Oracle, DB2 LUW, SQL Server, PostgreSQL, Mimer SQL, MySQL, and Vertica.

Explain Plan executes your query and records the plan that the database devises to execute it. By examining

this plan, you can find out if the database is picking the right indexes and joining your tables in the most efficient

manner. The explain plan feature works much the same as executing SQLs to present result sets; you may

highlight statements, run a script or load from file. The explain plan results can easily be compared by pinning

the tabs for different runs.

DbVisualizer presents the plan either in a tree style format or in a graph. What information is shown depends on

the database you use. In the tree view, put the mouse pointer on the column header for a tooltip description

what that column represents. The following screenshot shows the SQL in the editor at top and the

corresponding explain plan as the result.

DbVisualizer 9.2 Users Guide

Page of 182 428

The Graph View shows the plan as a graph. The graph can be exported to an image file or printed. Use the

menubar buttons to export and print.

DbVisualizer 9.2 Users Guide

Page of 183 428

The databases use different techniques to manage their explain plan support. You can make database-specific

configurations in the tab for a connection, in the category. Properties Explain Plan

9.10 Auto Commit, Commit and Rollback

With Auto Commit enabled, all changes you make to the database data is automatically committed after the

successful execution of an SQL statement. Auto Commit is enabled for a connection by default. You can change

the default in the area of the tab for the connection.Options Object View

DbVisualizer 9.2 Users Guide

Page of 184 428

You can toggle the Auto Commit setting for an open SQL Commander tab using the main SQL Commander

menu item of the corresponding button in the SQL Commander toolbar. Alternatively, you can use this command

in a script to set it:

@set autocommit on/off;

If Auto Commit is disabled, it is very important to manually issue the commit or rollback operations when

appropriate. Use the and buttons in the SQL Commander toolbar or the corresponding Commit Rollback

operations in the main menu to commit and rollback transactions.SQL Commander

Alternatively, you can use the following commands in a script executed in the SQL Commander:

@commit;

@rollback;

There is an indicator in the editor status bar:Auto-Commit: ON/OFF

The first number represents the number of records updated in the database since the last commit/rollback. The

second number shows the number of statements (except SELECTs) that has been executed since last commit/

rollback.

Having Auto Commit off for a connection should be handled with great care since transactions may lock parts of

the database (this is database dependent). To minimize the risk of forgetting uncommitted transactions, there is

an settings in the connection tab, in the category, Ask when Auto Commit is OFF Properties Transactions

that can be set to warn you when there are changes that hasn't been committed. You can set it to or Always

. When set to , you are warned when there is at When Uncommitted Updates When Uncommitted Updates

least one updated record reported by the database. For database that do not accurately report updated records,

you can set it to to be warned if at least one statement (other than SELECT) has been executed since Always

the last commit or rollback.

DbVisualizer 9.2 Users Guide

Page of 185 428

There is also a setting in the Tool Properties dialog, in the Transaction Pending Transactions at Disconnect

category under the General tab. It specifies what DbVisualizer should do when you disconnect a connection that

has pending changes, and you can set it to , or .Commit Rollback Ask

9.11 Managing Frequently Used SQL

You may have a set of SQL statements that you use over and over to perform frequent tasks. You probably

have them saved in script files that you can load into an SQL Commander, but DbVisualizer make itBookmarks

even easier to work with them. A Bookmark is a script visible in the Scripts tab in the navigation area.

Creating, Editing and Organizing Bookmarks (see page 186)

Executing Bookmarks (see page 187)

Adding a Bookmark as a Favorite (see page 188)

Sharing Bookmarks (see page 188)

Using Quick Load (see page 188)

You find your Bookmarks under the Scripts tab in the navigation area to the left in the main DbVisualizer window

. The content of a Bookmark is one or more SQL statements. It may also be associated with a Connection, a

Catalog and a Schema, to be used when executing the statements. This information is displayed, and can be

edited, in the lower part of the Scripts tab, along with information about the file that holds the Bookmark. If you

don't want to see these details, you can disable it with the Show Details toggle control in the right-click menu for

a node.

DbVisualizer 9.2 Users Guide

Page of 186 428

9.11.1 Creating, Editing and Organizing Bookmarks

You can create a new Bookmark by selecting the node in the tree and clicking the Bookmarks Create File

toolbar button. This adds a new node in the tree, with the default name selected so that you can replace it with

the name you want to use. You can also rename the Bookmark later using the right-click menu item.Rename

A Bookmark can also be created from the current content in an SQL Editor. Click the toolbar Save File As

button to open a file chooser dialog, and click the button in the file chooser dialog to go to the Bookmarks

Bookmarks root directory. Enter a filename for the Bookmark and click .Save

DbVisualizer 9.2 Users Guide

Page of 187 428

To put some SQL statements in a new empty Bookmark or to edit the contents of an existing Bookmark, you

need to open the Bookmark in an SQL Commander. Double-click the Bookmark node in the tree or click the

corresponding toolbar button to open a new SQL Commander tab for the Bookmark, or activate the SQL

Commander that already holds the Bookmark. When you are done with your edits, use the toolbar button Save

in the SQL Editor to save them.

You can also add the content of a Bookmark to the current content of an SQL Commander editor. Select the

Bookmark node, drag it with the mouse key depressed to the position in the editor where you want to add it, and

drop it there by releasing the mouse button.

Folders can be used to organize your Bookmarks. Click the toolbar button to create a new folder Create Folder

and give it the name you want. You can then drag an existing Bookmark node to the folder, and create new

Bookmarks and subfolders in the folder by selecting it and clicking the and buttons.Create File Create Folder

The folders and the Bookmarks within a folder are ordered alphabetically and cannot be changed

manually.

9.11.2 Executing Bookmarks

With a Bookmark opened in an SQL Commander tab, you can of course execute its statements by clicking the

 toolbar buttons as usual, but you can also open and execute a Bookmark directly by selecting it in the Execute

tree and using the operations in the right-click menu.Open in SQL Commander and Execute

DbVisualizer 9.2 Users Guide

Page of 188 428

9.11.3 Adding a Bookmark as a Favorite

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

If you are using a Bookmark very often, you may find it more convenient to add it to the Favorites area (see

. You can drag and drop a Bookmark from the Scripts tab to the Favorites area, or via the page 272) Add to

 right-click menu operation.Favorites

9.11.4 Sharing Bookmarks

It's easy to share your Bookmarks with someone else because they are stored as regular files. The files are

located in a subfolder of the DbVisualizer user preferences folder named . The user preferences Bookmarks

folder is typically a subfolder named in your home folder..dbvis

The main Bookmark content is stored in a file with exactly the same name as the node in the Scripts tab. The

additional data associated with the Bookmark is stored in a file with the same name plus the extension..met

To share some of your Bookmarks with someone, we recommend that you use DbVisualizer to create a

separate Bookmarks subfolder for the shared Bookmarks. You can then use any external tool to create a file

archive (e.g. a ZIP file) of that subfolder and send it to your friend or colleague. He or she can then extract the

files into the local DbVisualizer user preferences folder.Bookmarks

9.11.5 Using Quick Load

An alternative to locating Bookmarks in the Scripts tab and History entries in the History window is to use the

 feature, by default bound to the key combination. It is also available via a main toolbar Quick Load Ctrl+Alt+O

button as well as in the menu.File->Quick File Open

DbVisualizer 9.2 Users Guide

Page of 189 428

The Quick Load feature locates files with partly matching names from the categories you have selected, as you

type. You can use an asterisk ("*") as a wildcard in the search string. Use the field to limit the number of Max

matching files to display in the list.

When you see the file you're looking for, just select it and click to load it into an SQL Commander editor. IfEnter

the file is already loaded in an editor, that tab is made visible instead.

9.12 Creating Queries Graphically

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

The Query Builder provides an easy way to develop database queries. The Query Builder provides a point and

click interface and does not require in-depth knowledge about the SQL syntax.

Creating a Query (see page 190)

Adding tables (see page 191)

Joining Tables (see page 193)

Setting Join Properties (see page 194)

Removing Tables and Joins (see page 195)

Specifying Query Details (see page 196)

SQL Preview (see page 200)

Testing the Query (see page 200)

Loading a Query From the Editor (see page 201)

Properties for the Query Builder (see page 201)

Express joins as JOIN clause or WHERE condition (see page 202)

DbVisualizer 9.2 Users Guide

Page of 190 428

Table and Column Name qualifiers (see page 202)

Delimited Identifiers (see page 202)

Current Limitations (see page 203)

The Query Builder is part of the SQL Commander, alongside the SQL Editor. When you are ready to test a

query built with the Query Builder, you just load it to the SQL Editor for execution.

This document talks only about Tables even though the Query Builder supports both table and view

objects.

9.12.1 Creating a Query

To create a query, open the query builder using the menu choice or SQL Commander->Show Query Builder

click the vertical button in the SQL Commander. Make sure that the controls in the top section of Query Builder

the Query Builder are set correctly.

The easiest way to jump between the Query Builder and the SQL Editor is by clicking the vertical control buttons

to the right in the SQL Commander. Clicking these buttons changes the display, but does not copy the query

DbVisualizer 9.2 Users Guide

Page of 191 428

1.

2.

3.

4.

5.

6.

from one display to the other. To copy the current query from the Query Builder to the SQL Editor, use the

toolbar buttons at the top of the Query Builder:

The first button (from left) replaces the content of the SQL Editor with the query SQL and executes it,

The second button replaces the content of the SQL Editor with the query SQL, without executing it,

The third button adds the query last in the SQL Editor,

The fourth button copies the query to the system clipboard,

The fifth button opens a dialog that lets you add tables matching a search criteria,

The sixth button is a drop-down menu for selecting what to show below the diagram area: query details or

the SQL preview.

The first three buttons automatically change the display to the SQL Editor.

You can also load a query from the SQL Editor into the Query Builder, as described in detail below (see page

.201)

Adding tables
To add tables using drag and drop, make sure the database objects tree and the table and/or view objects are

visible. Then select and drag nodes from the tree into the diagram area.

DbVisualizer 9.2 Users Guide

Page of 192 428

Drag and Drop

To add a table, drag it from the object tree to the diagram area of the Query Builder. When the table is dropped

in the diagram area, it is shown as a window with the table name as the window title. You can select multiple

tables and/or views and drag and drop them together.

Below the title is a text field where an optional table alias can be entered. If a table alias is specified, it is used in

the Query Builder and the generated SQL statement to refer to this table.

Under the table alias field is a list of all table columns. Use the check box in front of each name to select

whether the column should be included in the query result set. Columns selected for the query result set also

appear in the and details tabs.Columns Sorting

An alternative to dragging and dropping tables into the Query Builder is to use the Quick Table Add dialog.

It lists tables matching the search criteria as you type it in the search text field. An asterisk ("*") can be used as a

wildcard for any characters.

DbVisualizer 9.2 Users Guide

Page of 193 428

Joining Tables
To join two tables, select the column in the source table window with the mouse, drag it to the target table

column, and drop it.

The two columns now represent a join condition, shown in the graph as a link between the columns. If more than

one join condition is needed, link additional columns in the two tables by dragging and dropping the columns in

the same way as for the first join condition. The default join type is an Inner join and the default condition is "

equal to" (=), represented as an icon with overlapping circles with the shared area shaded and an equal sign

below them.

Some database schemas declare how tables are related using primary and foreign keys. Other schemas use

column names to indicate these relationships. For instance, in the figure above, the EMPLOYEES table has a

column named DEPARTMENT_ID, which refers to the column with the same name in the DEPARTMENTS

table. The Query Builder can be configured to use both kinds of rules to automatically join the tables you add to

the query builder.

The auto-join feature is disabled by default. You can enable it in the tool properties for the database type (Tools

, under the tab) or for a specific connection (the tab in the ->Tool Properties Database Properties Object View

tab for the connection).

DbVisualizer 9.2 Users Guide

Page of 194 428

In the Query Builder category, you can enable the auto-join feature and select whether to use key declarations (

FK/PK) or column names to find out how the tables are related.

When you add a new table with auto-join enabled, the Query Builder automatically joins it to the tables already

in the builder if table columns match the selected matching rule.

If columns in the table you add are related to other columns in the same table, the Query Builder creates two

windows for the table and joins them based on the matching rule. In this case, a table alias is also added for one

of the windows so that you can tell the two windows for the same table apart.

Setting Join Properties
A Join Properties dialog can be opened by double-clicking the icon or selecting from the Join Properties

right-click menu while the mouse pointer is over the join icon. The Join Properties dialog shows the source and

target table columns and the conditional operator.

You can change the join type and the conditional operator in the Join Properties dialog. The join type defines

how the records from the tables should be combined:

Inner

This is the most common join type as it finds the results in the intersection between the tables.

Left

This join type limits the results to those in the left table leaving 0 matching records in the right table as

NULL.

Right

This is the same as left join but reversed

DbVisualizer 9.2 Users Guide

Page of 195 428

Full

A full join combines the results of both left and right joins.

If you have multiple join conditions (linked columns) between two tables, you can specify different

conditional operators for each join condition, but the join type is shared between all join conditions; if

you change it for one join condition, it is changed for all the other join conditions linking the two tables.

This is not a restriction in the Query Builder but rather how SQL is defined.

Here is the sample SQL generated from the previous join definition:

SELECT

 *

FROM

 HR.EMPLOYEES

INNER JOIN

 HR.DEPARTMENTS

ON

 (HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID)

Removing Tables and Joins
A table window is removed by clicking the close icon in the window header. A join is removed by selecting

 in the right-click menu while the mouse pointer is over the join icon.Remove Join

DbVisualizer 9.2 Users Guide

Page of 196 428

All tables and joins may be removed via Remove All Joins and Remove All Tables.

Specifying Query Details
The Details tabs below the diagram area are used to define the various parts of the query. The tabs basically

represent the following parts of the final SQL:

 SELECT <Columns>

 FROM <Tables>

 WHERE <Conditions>

GROUP BY <Columns>

 HAVING <Grouping>

ORDER BY <Sorting>

(The Tables clause is defined in the diagram, not by a tab).

Use the tab to specify characteristics of the columns that are included in the query. The list is initially Columns

empty until a column is checked in a table window or a column expression is added manually (see below).

Columns will appear in the list in the same order as they are checked but may be moved at any time with the up

and down buttons. To include all columns from a table, right-click in the column list in the table window and

choose .Select All

DbVisualizer 9.2 Users Guide

Page of 197 428

The previous screenshot shows a total of 5 checked columns in the two tables. These are presented in the

columns list by their full column identifier, qualified by either the table name or the table alias. To remove a

column from the list, uncheck the corresponding column in the table window.

The alias field is used to specify an optional alias identifier for the column. The alias is used as the identifier for

the column in the final query and also appears as the column name in the result set produced by the query.

Check the documentation for the actual database to see if the alias must be quoted since the Query Builder

does not do this for you.

The and by fields are used in combination:Aggregate Group

The field lists the available aggregation functions (AVG, COUNT, MAX, MIN, SUM) that may Aggregate

be used for columns

The field specifies whether the column should be included in the group for which aggregate Group By

columns are summarized

The field is disabled unless an aggregate function is selected for at least one column, and once you Group By

select an aggregate function for one column, you must set for at least one of the other columns to Group By

form a valid query. If you remove the aggregate function for all columns, is automatically reset for all Group By

DbVisualizer 9.2 Users Guide

Page of 198 428

columns. and are also mutually exclusive options for one column, so when you select oneGroup By Aggregate

of them, the field for the other is disabled for that column.

A custom expression may be added by entering data in the empty row last in the list, e.g., or col1 + col2

. Once entered, press enter to insert a new empty TO_CHAR(ts_col, 'DD-MON-YYYY HH24:MI:SSxFF')

row. You can remove a custom expression by selecting it and clicking the Remove button.

You can also launch a multi-line text editor for a custom expression, to make it easier to edit a large expression

such as a CASE clause. Just double-click the expression cell, and then click on the editor launch button.

The tab is used to manage the WHERE clause for the query. A WHERE clause may consist of Conditions

several conditions connected by AND or OR. The evaluation order for each condition is defined by indentation in

the condition list. Each level in the list will be enclosed by brackets in the final SQL.

Here is an example from the tab.Conditions

DbVisualizer 9.2 Users Guide

Page of 199 428

To create a new WHERE condition, press the indexed button in the list. In the menu that is displayed you may

choose to create a new condition on the same level, a compound condition or delete the current condition.

For compound conditions you may choose whether (AND), (OR), (NOT OR) or (NOT All Any None Not All

AND) conditions must be met for its sub conditions. The SQL for the tab in the figure is:Conditions

WHERE

 emp.SALARY > 4000

AND

 (

 dept.DEPARTMENT_NAME = 'Human Resources'

 OR dept.DEPARTMENT_NAME = 'IT'

)

Next to the input field for each condition, there is a drop down button. When pressed it shows all columns that

are available in the tables currently being in the Query Builder. You can pick columns from the list instead of

typing these manually.

DbVisualizer 9.2 Users Guide

Page of 200 428

A condition field may also contain a custom expression, and just as for a custom expression in the columns list,

you can launch a multi-line editor for the expression by selecting the field and click the editor launch button.

The tab is used to define the conditions for the HAVING clause that may follow a GROUP BY clause Grouping

in an SQL query. This tab is only enabled when at least one of the columns in the Columns tab is marked as a

Group By column.

The HAVING clause is similar to the WHERE clause, except that the HAVING clause limits what rows are

included in the groups defined by the GROUP BY clause, after the WHERE clause has been used to limit the

total number of rows to process.

You work with conditions in this tab in the same way as in the tab, with one exception regarding the Conditions

drop-down button for the fields in a condition. In the tab, the drop-down shows all columns listed in Grouping

the tab, with an aggregate function expression for columns that have an aggregate function defined. Columns

This is because (according to the SQL specification) the conditions in a HAVING clause must only refer to

columns that are being returned by the query.

Finally, the tab is used to specify how the final result set will be sorted. All columns for the tables in the Sorting

graph, plus any custom expressions created for the selection list in the tab, are listed in the Columns Sorting

tab.

SQL Preview
Select w in the drop-down menu in the toolbar to show a preview of the final SQL. This is a SQL Previe

read-only view and cannot be modified.

9.12.2 Testing the Query

To test the query, simply press the appropriate toolbar button in the Query Builder to copy the SQL to the SQL

Editor. Then execute the SQL as usual in the SQL Editor. Or click the button in the Query Builder Execute

toolbar to copy and execute the SQL in one step.

DbVisualizer 9.2 Users Guide

Page of 201 428

To further refine the SQL press the Query Builder button and make the necessary changes.

9.12.3 Loading a Query From the Editor

If you have an existing SQL query that you want to modify using the Query Builder, you can load it from the SQL

Editor into the Query Builder by clicking the button in the SQL Editor toolbar.Load in Query Builder

It's important to be aware that the Query Builder does not support all features of the SQL SELECT statement,

such as comments, UNION, and database-specific keywords. If you load a query into the Query Builder that

contains unsupported constructs or keywords, they are ignored and a dialog pops up with a warning about this

fact. You can then use the SQL Preview tab in the Query Builder to compare the SQL as it is represented in the

Query Builder with the original SQL that you loaded to understand what was ignored.

9.12.4 Properties for the Query Builder

In addition to the setting discussed above, there are a few other properties that control how the Auto Join

Query Builder works and the SQL it generates. You can set these properties for the database type (Tools->Tool

DbVisualizer 9.2 Users Guide

Page of 202 428

, under the tab) or for a specific connection (the tab in the tab for Properties Database Properties Object View

the connection).

Express joins as JOIN clause or WHERE condition
The property is available in the Generate JOIN Clause in SQL Builder [Database Type]->Query Builder

category. Joins can be expressed either via the standardized SQL JOIN clause or a WHERE clause, using

database-specific syntax for the Left and Right join types. The database-specific WHERE clause syntax is

somewhat different between the supported databases and the Full outer join type is not supported. The default

for this property is to use a JOIN clause.

A simple inner join expressed as a JOIN clause:

FROM HR.EMPLOYEES

INNER JOIN HR.DEPARTMENTS

ON (HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID

Here is the same join expressed as a WHERE condition:

FROM HR.EMPLOYEES, HR.DEPARTMENTS

WHERE HR.EMPLOYEES.DEPARTMENT_ID = HR.DEPARTMENTS.DEPARTMENT_ID

The syntax for expressing Inner and Outer joins in WHERE conditions is different between databases. Oracle,

for example, uses the "(+)" sequence to the left or right of the conditional operator to express left or right joins.

SQL Server and Sybase use "*=" or "=*" for the same purpose.

DbVisualizer automatically uses the correct join notation when generating joins as WHERE conditions for

databases that support left and right joins using WHERE conditions. For databases that do not provide syntax

for left and right joins, the join type is ignored and the WHERE condition that is generated produces an inner join

result.

Table and Column Name qualifiers
Whether to qualify table names with the schema or database name and whether to qualify column names with

the table name are defined in the category.[Database Type]->Qualifiers

Delimited Identifiers
Identifiers that contain mixed case characters or include special characters need to be delimited. Define this in

the category.[Database Type]->Delimited Identifiers

DbVisualizer 9.2 Users Guide

Page of 203 428

9.12.5 Current Limitations

These are the current limitations in the Query Builder:

Unions and sub queries are not supported.

Not all join types are supported when joins are expressed as WHERE clause conditions. The join Inner

type is supported for all databases, but the and types are only supported for databases with Left Right

proprietary syntax to express these types, e.g., Oracle, SQL Server and Sybase. The type is not Full

supported for any database. If a join type is not supported, the setting in the dialog is Join Properties

silently ignored.

When importing an SQL query from the SQL Editor, comments, unsupported keywords and statement

clauses are ignored. A dialog tells you which parts of the query are being ignored when unsupported

parts are found in the imported statement.

There is only limited support for the CASE clause, in that everything between CASE and END is treated

as uninterpreted text. This means that, as opposed to plain object references in the select list or

conditions, column names and other identifiers within a CASE clause are not affected by changes to the

Query Builder property settings, such as Delimited Identifiers and Qualifiers.

9.13 Formatting SQL

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

The menu contains four operations for formatting SQL statements.SQL->Format SQL

Format Buffer formats the complete editor content and formats the current SQL (at cursor Format Current

position).

The formatting is done according to the settings defined in the Tool Properties dialog, in the SQL Editor/SQL

 category under the General tab. There are many things you can configure. After making some Formatting

changes, press and format again to see the result.Apply

Here is an example of an SQL statement before formatting:

select

CompanyName, ContactName, Address,

City, Country, PostalCode from

Northwind.dbo.Customers OuterC

where CustomerID in (select top 2 InnerC.CustomerId

DbVisualizer 9.2 Users Guide

Page of 204 428

from Northwind.dbo.[Order Details] OD

join Northwind.dbo.Orders O on OD.OrderId = O.OrderID

join Northwind.dbo.Customers InnerC

on O.CustomerID = InnerC.CustomerId

Where Region = OuterC.Region

group by Region, InnerC.CustomerId

order by sum(UnitPrice * Quantity * (1-Discount)) desc)

order by Region

And here is the same statement after formatting has been applied with default settings:

SELECT

 CompanyName,

 ContactName,

 Address,

 City,

 Country,

 PostalCode

FROM

 Northwind.dbo.Customers OuterC

WHERE

 CustomerID in

 (

 SELECT

 top 2 InnerC.CustomerId

 FROM

 Northwind.dbo.[ORDER Details] OD

 JOIN

 Northwind.dbo.Orders O

 ON

 OD.OrderId = O.OrderID

 JOIN

 Northwind.dbo.Customers InnerC

 ON

 O.CustomerID = InnerC.CustomerId

 WHERE

 Region = OuterC.Region

 GROUP BY

 Region,

 InnerC.CustomerId

 ORDER BY

 SUM(UnitPrice * Quantity * (1-Discount)) DESC)

ORDER BY

 Region

Copy Formatted and are powerful tools for copying SQL statements between programs Paste Formatted

written in languages like Java, C#, PHP, VB, etc. and the SQL Editor. Both operations display a dialog where

you can adjust some of the formatting options, most importantly the option and the Target SQL SQL is

option. can be set to a number of common programming language formats.Between Target SQL

DbVisualizer 9.2 Users Guide

Page of 205 428

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

1.

2.

For instance, to copy an SQL statement and paste it as Java code for adding it to a Java StringBuffer:

Select the statement,

Choose ,SQL->Format SQL->Copy Formatted

Set to Java StringBuffer,Target SQL

Click to place the formatted statement on the system clipboard,Format

Paste it into your Java code.

To copy a statement wrapped in code from a program:

Select the code containing an SQL statement in your program,

Copy it to the system clipboard,

Choose ,SQL->Format SQL->Paste Formatted

Check and enter the character enclosing the SQL statement in the code,SQL is Between

Click to extract the SQL statement and paste the formatted SQL in the editor.Format

9.14 Using Max Rows and Max Chars for Queries

DbVisualizer limits the number of rows shown in the result set tab to 1000 rows, by default. This is done to

conserve memory. If this limit prevents you from seeing the data of interest, you should first consider:

Using a WHERE clause in the query to only retrieve the rows of interest instead of all rows in the table,

Exporting the table (see page 107) to a file

If you really need to look at more than 1000 rows, you can change the value in the field in the SQL Max Rows

Commander toolbar. Use a value of 0 or -1 to get all rows, or a specific number (e.g. 5000) to set a new limit.

Character data columns may contain very large values that use up lots of memory. If you are only interested in

seeing a few characters, you can set the field in the SQL Commander toolbar to the number of Max Chars

characters you want to see.

You can define how to deal with columns that have more characters than the specified maximum in the Tool

Properties dialog, in the Grid category under the General tab. You have two choices: or Truncate Values

.Truncate Values Visually

Truncate Values truncates the original value for the grid cell to be less then the setting of Max Chars.

This affects any subsequent edits and SQL operations that use the value since it's truncated. This

setting is only useful to save memory when viewing very large text columns.

DbVisualizer 9.2 Users Guide

Page of 206 428

Truncate Values Visually truncates the visible value only and leave the original value intact. This is the

preferred setting since it will not harm the original value. The disadvantage is that more memory is

needed when dealing with large text columns.

When the grid data is limited due to either the or value, you get an indication about this Max Rows Max Chars

in the rows/columns field in the grid status bar and in the corresponding limit field.

Along with the highlighted field, a warning pops up close to the filed. You can disable this behavior in the Tool

Properties dialog, in the category under the General tab.Grid

9.15 Getting the DDL for an Object

You can use the command in a script to get the DDL for a number of different database object types. The @dll

command supports this general syntax:

@ddl <objType>="<objId>" [drop="true | false"] [constrCtrl="<constrCtrl>"]

where is one of , , , , , (Oracle <objType> table indexesfortable view procedure function package

only), (Oracle only), (Oracle only), (Oracle only), (packagebody objecttype objecttypebody sequence

Oracle only), (Oracle only), (Mimer SQL only) or , and is the qualified synonym module trigger <objId>

identifier for the object (case sensitive). Here's an example:

@ddl table="HR.EMPLOYEES";

If is set to , a DROP statement is included before the CREATE statement.drop true

The parameter only applies to tables. It accepts two values: means that no constraints constrCtrl noconstr

should be included in the statement that can potentially cause creating the table or inserting data into it to fail (

FK and CHECK constraints), while means that an ALTER statement adding the remaining onlyconstr

constraints should be generated instead of a CREATE statement.

DbVisualizer 9.2 Users Guide

Page of 207 428

9.16 Using the Log Tab

At the top of the Log tab, you can choose to log information about the execution of your SQL statements to the

GUI or to a file.

If you choose to log to file, you can enter the file path in the text field or click the button to the right of the field to

launch a file browser. By default, the log information is written to the GUI, below the log destination controls.

The checkbox controls preprocessing, as described in the Preprocess script Executing an External Script (see

 page.page 179)

The log keeps an entry for each SQL statement that has been executed. It provides generic information, such as

how many rows were affected and the execution time. The important piece of information is the execution

message which shows how the execution of that specific statement ended. If an error occurred, the complete log

entry will be in red, indicating that something went wrong.

The detail level in an error message depends on the driver and database that is being used. Some databases

are very good at telling you what went wrong and why, while others provide less detail.

Clicking the icon to the left of each log entry selects the corresponding SQL statement in the SQL editor. The

icon also has a right-click menu; with submenus for where to place the SQL (at caret, Load SQL into Editor

first, last or replacing the current content), and .Load SQL in New Editor

The tab right-click menu contains entries that let you control the log content. Use the entries to defineLog Show

which information you want to appear in the log. The entries are used to remove certain kinds of results Clear

from an existing log.

DbVisualizer 9.2 Users Guide

Page of 208 428

1.

2.

If you enable the control, the SQL Commander automatically clears the log between executionsAuto Clear Log

.

9.17 Writing to the Log Tab

You can use the @echo client side command to write information to the Log tab.

@echo <message>

The message may contain , e.g. one of the predefined variables.DbVisualizer variables (see page 221)

@echo Today is ${dbvis-date}$ and the time is ${dbvis-time}$

Variables can also be used to display values produced by executing a function or stored procedure (see page

:144)

@call ${STATUS||(null)||String||noshow dir=out}$ = "HR"."GET_STATUS"(1002);

@echo STATUS: ${STATUS}$;

9.18 Using the DBMS Output Tab

The tab is only available for Oracle databases. It is used to capture messages produced by DBMS Output

stored procedures, packages, and triggers. These messages are typically inserted in the code for debugging

purposes. For SQL*Plus users, the corresponding feature is enabled via the command. Toset serveroutput on

enable display of DBMS messages in DbVisualizer,

Select the tabDBMS Output

Press the button.Enable

Once DBMS output is enabled, the icon in the tab header is changed. Invoking a stored procedure that produces

messages in the SQL Commander results in content similar to this in the output tab. (Each block of output is

separated with a timestamp).

DbVisualizer 9.2 Users Guide

Page of 209 428

9.19 Comparing SQL Scripts

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

You can compare a script in one SQL Commander editor to a scripts in another SQL Commander editor, or to

the original file loaded into the editor.

To compare the script to another script, select from the right-click menu in one editor and pick Compare

the SQL Commander holding the other script in dialog to Select Object compare their text content (see

.page 256)

To compare the script to the original file, select from the right-click menu.Compare to Saved

9.20 Exporting Query Results

DbVisualizer 9.2 Users Guide

Page of 210 428

1.

2.

3.

4.

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Instead of viewing query results in Result Set grids, you can export the result of one or more queries to a file.

For very large results, this may be the preferred choice due to memory constraints.

To export a query result, create a script with

an command,@export on

an command,@export set

one or more queries,

an command.@export off

Here is a basic example:

@export on;

@export set filename="c:\Backups\Orders.csv";

select * from Orders;

@export off;

The @export set command takes a parameter name followed by an equal sign and a value. You can use the

following parameters, where only filename is required and all names are case-insensitive:

Parameter Default Valid Values

AppendFile false true, false, clear

BinaryFileDir Directory path for data files when BinaryFormat is set to

File

BinaryFormat Don't Export Don't Export, Size, Value, Hex, Base64, File

BooleanFalseFormat false false, no, 0, off

BooleanTrueFormat true true, yes, 1, on

CLOBFileDir Directory path for data files when CLOBFormat is set to

File

CLOBFormat Value Don't Export, Size, Value, File

CsvColumnDelimiter \t (TAB)

CsvIncludeColumnHeader true true, false

DbVisualizer 9.2 Users Guide

Page of 211 428

Parameter Default Valid Values

CsvColumnHeaderIsColumnAlias true true, false

CsvIncludeSQLCommand Don't

Include

Don't Include, Top, Bottom

CvsRemoveNewlines false true, false

CsvRowCommentIdentifier

CsvRowDelimiter \n \n (UNIX/Linux/Mac OS X), \r\n (Windows)

DateFormat yyyy-MM-dd See valid formats in Changing the Data Display Format (

 documentsee page 106)

DecimalNumberFormat Unformatted See valid formats in Changing the Data Display Format (

 documentsee page 106)

Destination File File

Encoding UTF-8

ExcelColumnHeaderIsColumnAlias false true, false

ExcelFileFormat binary binary (Binary Excel) or ooxml (Excel 2007)

ExcelIncludeColumnHeader true true, false

ExcelIncludeSQLCommand false true, false

ExcelIntroText Any description

ExcelTextOnly false true, false

ExcelTitle Any title

Filename REQUIRED

Format CSV CSV, HTML, XML, SQL, XLS, JSON

HtmlIncludeSQLCommand false true, false

HtmlIntroText Any description

HtmlTitle Any title

JSONStyle Array Array, Rows

NumberFormat Unformatted See valid formats in Changing the Data Display Format (

 documentsee page 106)

DbVisualizer 9.2 Users Guide

Page of 212 428

Parameter Default Valid Values

QuoteDuplicateEmbedded true true, false (quote char is the same as QuoteTextData)

QuoteTextData None None, Single, Double

Settings The path to an XML file containing all settings

ShowNullAs (null)

SqlBeginIdentifier Character to use to begin a quoted identifier. Note! To

specify a double-quote, you must duplicate it since

double-quote is also used to enclose the parameter value.

SqlBlockBeginDelim String to use to begin an SQL block when exporting

complex DDL statements using the @ddl command.

SqlBlockEndDelim String to use to end an SQL block

SqlDelimitedIdentifiers true true, false

SqlEndIdentifier Character to use to end a quoted identifier. Note! To

specify a double-quote, you must duplicate it since

double-quote is also used to enclose the parameter value.

SqlIncludeCreateDDL false true, false

SqlIncludeSQLCommand Don't

Include

Don't Include, Top, Bottom

SqlQualifier Qualifier to use when qualifying table names. If not set,

DbVisualizer tries to determine the schema and use it as

the qualifier.

SqlQualifyTableName true true, false

SqlRowCommentIdentifier --

SqlSeparator ; Statement separator character.

TableName Can be set if DbVisualizer cannot determine the value for

the variable${dbvis-object}$

TimeFormat HH:mm:ss See valid formats in Changing the Data Display Format (

 documentsee page 106)

TimeStampFormat yyyy-MM-dd

HH:mm:

ss.SSSSSS

See valid formats in Changing the Data Display Format (

 documentsee page 106)

DbVisualizer 9.2 Users Guide

Page of 213 428

Parameter Default Valid Values

XmlIncludeSQLCommand false true, false

XmlIntroText Any description

XmlStyle DbVisualizer DbVisualizer, XmlDataSet, FlatXmlDataSet

Here are a few examples using some of these settings.

9.20.1 Automatic table name to file mapping

This example shows how to make the filename the same as the table name in the select statement. The

example also shows several select statements. Each will be exported in the SQL format. Since the filename is

defined to be automatically set, this means that there will be one file per result set and each file is named by the

name of its table.

@export on;

@export set filename="c:\Backups\${dbvis-object}$" format="sql";

select * from Orders;

select * from Products;

select * from Transactions;

@export off;

There must be only one table name in a select statement in order to automatically set the filename with

the variable, i.e if the select joins from several tables or pseudo tables are used, you ${dbvis-object}$

must explicitly name the file.

The variable is not substituted with a table name if using the AppendFile="true/clear"${dbvis-object}$

parameter.

9.20.2 Multiple results to a single file

This example shows how all result sets can be exported to a single file. The parameter supports AppendFile

the following values.

true

The following result sets will all be exported to a single file

false

Turn off the append processing

DbVisualizer 9.2 Users Guide

Page of 214 428

clear

Same as the true value but this will in addition clear the file before the first result set is exported

@export on;

@export set filename="c:\Backups\alltables.sql" appendfile="clear" format="sql";

select * from Orders;

select * from Products;

select * from Transactions;

@export off;

9.20.3 Using predefined settings

If you save settings when or a , you can use the exporting a table (see page 107) schema (see page 152)

 parameter to reference the settings file.Settings

@export on;

@export set settings="c:\tmp\htmlsettings.xml" filename="c:\Backups\${dbvis-object}$";

select * from Orders;

select * from Products;

select * from Transactions;

@export off;

9.20.4 Limit the number of exported rows

You can use the command in combination with the command to override the @set maxrows @export Max

 field value in the SQL Commander tab toolbar.Rows (see page 205)

@set maxrows 10;

@export on;

@export set filename="c:\Backups\alltables.sql" format="sql";

select * from Orders;

select * from Products;

select * from Transactions;

@export off;

If Max Rows is set to a positive number, you can use the command to set it to to export all @set maxrows -1

rows.

9.21 Using Permissions in the SQL Commander

DbVisualizer 9.2 Users Guide

Page of 215 428

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

The functionality is a security mechanism, where you can specify that certain database operations Permission

must be confirmed. You configure permissions in the Tool Properties dialog, in the category of the Permissions

General tab, per (Development, Test and Production).connection mode

You specify which connection mode to use for a connection in the tab of the Object View tab for the Properties

connection.

The permission feature is part of DbVisualizer and does not replace the authorization system in the

actual database.

For the SQL Commander, you can pick the permission mode type from a drop-down list for each SQL command

:

Permission

Type

Description

Allow This permission type means that you can run the SQL statement without any confirmation

Deny This permission type means that the SQL statement is not executed at all.

Ask This permission type means that when executing an SQL statement, or a script of statements,

the SQL Commander asks you whether the actual SQL command(s) should be executed.

DbVisualizer 9.2 Users Guide

Page of 216 428

9.22 Sending Comments to the Database with Statements

Comments in an SQL script, identified by the delimiters defined in Tool Properties dialog in the SQL

 category under the General tab, are sent to the database by default. In some cases, Commander/Comments

you may not want to include the comments with the statement, for instance if your database does not handle

them. You can then enable the stripping of comments using the toggle item Strip Comments when Executing

in the in the menu.SQL Commander

DbVisualizer 9.2 Users Guide

Page of 217 428

9.23 Using Client-Side Commands

You can use DbVisualizer these client-side command in your scripts.

Command Description

@cd <directory>@run <file> [

<variables>]

Use these command to .execute an external script (see page 179)

@export Use this command to orexport the result of a query (see page 209)

procedure call to a file.

@delimiter <new_delimiter> Use this command to temporarily change the statement delimiter

for a .complex statement (see page 177)

DbVisualizer 9.2 Users Guide

Page of 218 428

Command Description

@call <function_or_proc> Use this command to execute a function or procedure (see page

.144)

@beep Use this command to emit a been sound, e.g. to indicate a

significant point in a script.

@sleep <milliseconds> Use this command to halt the processing the specified number of

milliseconds.

@echo <text> Use this command to .write to the Log tab (see page 208)

@window iconify

@window restore

Use these commands to lower (iconify) or raise (restore) the

DbVisualizer main window.

@desc <table> Use this command to show column information for a table. The

table name may be qualified with a schema and/or database name.

@ddl <params> Use this command to get the DDL for a database object (see page

.206)

@spool log <file_name> Use this command to write log messages to the named file. When

executed in the SQL Commander, all log messages produced up to

 are written to the file; if Log to File is selected, this this point

command is ignored. When executed by the pure command line

interface, all log messages produced are from this point onward

written to the file.

@stop on error

@stop on warning@continue on

error@continue on warning

Use these commands to control what to do when a statement

.results in a warning or an error (see page 174)

@set autocommit on

@set autocommit off

Use these commands to control the Auto Commit (see page 183)

state.

@commit

@rollback

Use these commands to explicitly commit or rollback (see page 183

 updates.)

@set serveroutput on

@set serveroutput off

Use these commands to enable or disable output to the DBMS

.Output tab (see page 208)

@set maxrows <number>

@set maxchars <number>

Use these commands to adjust the Max Rows and Max Chars (see

 limits for specific queries.page 205)

@set resultset name <name> Use this command to name any following result set. When

executed with a following SQL statement that produces a result set

DbVisualizer 9.2 Users Guide

Page of 219 428

Command Description

the tab showing this result set will be named using the <name>

supplied as a parameter to the command.

Example:

@set resultset name MyEmployees;

select * from EMPLOYEE;

DbVisualizer will for the example above show the result of the

select in a tab named MyEmployees

9.24 Parameterized SQL - Variables and Parameter

Markers

A useful feature in the SQL Commander is to use variables or parameter markers in SQL scripts. Variables are

used to express that certain parts of the SQL should be replaced with values when the SQL is executed. If you

use a script to perform repetitive tasks, such as creating a user and granting permissions, just insert variables

for the user name and permissions to grant in the script and DbVisualizer will prompt for the values at execution.

In addition to DbVisualizer's own variable syntax, two parameter marker syntaxes supported natively by some

databases/drivers can also be used. This makes it easier to use SQL statements from other tools or code as-is

in DbVisualizer, but you need to be aware of the limitations in how they are used compared to DbVisualizer

variables.

The following gives an overview of the different formats and how they can be used.

Even if DbVisualizer supports several variable formats it doesn't mean you can always copy/paste the

SQLs including the parameter markers to another application and successfully execute it. You need to

check the compatibility for the actual connector/driver/framework and even that the database itself

supports the used syntax.

The following variable syntaxes are supported by DbVisualizer:

DbVisualizer Variables

${variable||

value||type||

options}$

This is the most flexible syntax as it supports setting a name, default value, data type,

and other options. Check the section for details.DbVisualizer Variables (see page 221)

DbVisualizer 9.2 Users Guide

Page of 220 428

DbVisualizer Variables

A DbVisualizer variable can be used anywhere in the SQL as the specified value

replaces the variable definition as a literal (unless a data type is specified; with a data

type, its behavior is exactly the same as for).Named Parameter Markers

Example

select *

from EMPLOYEE

where FIRST_NAME like '${First Name||Phil}$'

and AGE > ${Age||20}$

The variable identifiers, can be modified in and in the ${...}$ Tools->Tool Properties

 category.General / Variables

Named Parameter Markers

&name

:name

:{name}:

'name'

These syntaxes are supported natively by a few databases. This format allows only a name for

the parameter and no other settings, such as type or default value. The parameter name is the

name DbVisualizer shows in the prompt window.

Named parameter values are bound at runtime with the markers in the SQL. Some JDBC

drivers/databases requires that the proper data type is set while some are more relaxed. For

named (and unnamed) parameter markers, you may chose data type in the prompt window.

Named parameter markers should only be used in contexts supported by the actual database,

usually for column values. For example, as opposed to a DbVisualizer variable, a parameter

marketer cannot be used for a table or column name.

The only difference between , , and is that the latter two, &name :name :{name} :'name' :{name

 and , allow white spaces in the name.} :'name'

Example

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)

values (null, &FirstName, &LastName, &Address, &Age);

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)

values (null, :FirstName, :LastName, :Address, :Age);

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)

values (null, :{FirstName}, :{LastName}, :{Address}, :{Age});

Read more about .named parameter markers (see page 228)

DbVisualizer 9.2 Users Guide

Page of 221 428

Unnamed Parameter Markers

? The question marker symbol is probably the most supported parameter marker among the supported

databases. It is also the most unintuitive marker since the user has to remember the order of question

marks and the corresponding values.

Since there is no name associated with it, DbVisualizer shows these as , and soParameter 1 Parameter 2

on in the prompt window.

There is no technical difference between how unnamed and named parameter markers are handled

internally in DbVisualizer or when processed by the database. All are bound with a prepared SQL

statement.

Example

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)

values (null, ?, ?, ?, ?)

Use named in favor of unnamed parameter markers if there is support in the target database based on the

easier reading of named markers. Read more about .unnamed parameter markers (see page 228)

It is not possible to mix DbVisualizer variables and parameter markers, or named and unnamed

parameter markers, in the same script. If you do, you will only be prompted for values for one type and

the execution will fail.

For more information about the different syntaxes check and Using DbVisualizer Variables (see page 221) Using

.Parameter markers (see page 228)

9.24.1 Using DbVisualizer Variables

DbVisualizer variables are used to build parameterized SQL statements and let DbVisualizer prompt you for the

values when the SQL is executed. This is handy if you are executing the same SQL repetitively, just wanting to

pass new data in the same SQL statement.

Variable Syntax (see page 222)

Pre-defined Variables (see page 223)

Variable Substitution in SQL statements (see page 224)

A DbVisualizer variable that will always be replaced with the doesn't specify a data type value as a

. This allows use of variables anywhere in an SQL statement. If a the literal data type is specified,

DbVisualizer 9.2 Users Guide

Page of 222 428

prompted value will be bound with the SQL and variables can in this context only be used where

 by the target database.supported

DbVisualizer Variables

${variable||

value||type||

options}$

This is the most flexible syntax as it supports setting a name, default value, data type,

and other options. Check the section for details.DbVisualizer Variables (see page 221)

A DbVisualizer variable can be used anywhere in the SQL as the specified value

replaces the variable definition as a literal (unless a data type is specified; with a data

type, its behavior is exactly the same as for).Named Parameter Markers

Example

select *

from EMPLOYEE

where FIRST_NAME like '${First Name||Phil}$'

and AGE > ${Age||20}$

The variable identifiers, can be modified in and in the ${...}$ Tools->Tool Properties

 category.General / Variables

Variable Syntax
The variable format supports setting a default value, data type and a few options as in the following example:

${FullName||Andersson||String||where pk}$

This is the complete syntax for a DbVisualizer variable:

${name || value || type || options}$

Part Default Description

name Required Required. This is the name that appear in the prompt window. If multiple variables in a

script have the same name, the substitution dialog shows only one and the entered

value will be applied to all variables with that name

value null The default value for the variable

type none

(= literal)

The type of variable: String, Boolean, Integer, Float, Long, Double, BigDecimal, Date,

Time and Timestamp. In addition DbVisualizer defines: BinaryData and TextData (for

CLOB). This is used to determine how the data should be passed between DbVisualizer

and the database server. If no type is specified, it is treated as a literal

DbVisualizer 9.2 Users Guide

Page of 223 428

Part Default Description

options none The options part is used to express certain conditions. Separate these with a

whitespace

pk

Indicates that the variable is part of the primary key in the final SQL.

Represented with a symbol in the prompt window

where

Defines that the variable is part of the WHERE clause. A symbol indicate this

condition in the prompt window

noshow

This option define that the variable should not appear in the prompt window. A

value must be set when using this option, unless it is an output variable (see dir

below)

nobind

Used in combination with when a is set and defines that the variable should type

be replaced as a literal in the SQL rather than being bound as a parameter

marker

dir=in | out | inout

The direction for a variable used with the command (it is ignored for other @call

uses). A variable assigned the return value for a function must be declared as dir

, and a variable used for a procedure parameter must use a dir type =out

matching the procedure parameter direction declaration. is the defaultin

Pre-defined Variables
A few pre-defined DbVisualizer variables can be used anywhere in the SQL. These are replaced with actual

values just before the SQL is sent to the DB server.

Note that none of the pre-defined variables below will show in the prompt window.

${dbvis-date}$

${dbvis-time}$

${dbvis-timestamp}$${dbvis-connection}$${dbvis-database-type}$

By default, date/time variable values are formatted as defined in , but you can Tool Properties->Data Formats

also specify a custom format for a single use of the variable, e.g.

${dbvis-date||||||format=[yyyyMMdd]}$

DbVisualizer 9.2 Users Guide

Page of 224 428

The following variables can be used only when monitoring a SQL statement that produce a result set and the

 for the monitor is > 0. The output format is seconds and milliseconds. Ex: 2.018Allowed Row Count

${dbvis-exec-time}$

${dbvis-fetch-time}$

Variable Substitution in SQL statements

For variable processing to work in the SQL Commander, make sure the SQL->Enable Parameterized

 main menu option is checked.SQL

A simple variable may look like this:

${FullName}$

A variable is identified by the start and end sequences, . (These can be ${...}$ re-defined (http://

confluence.dbvis.com/display/UG91/Using+DbVisualizer+Variables#

 in). During execution, the SQL UsingDbVisualizerVariables-ChangingtheDelimiterCharacters) Tool Properties

Commander searches for variables and displays the prompt window with the name of each variable and an input

(value) field. Enter the value for each variable and then press . This will then replace the variable with Execute

the value as a literal and finally let the database execute the statement.

Consider the following SQL statement with variables. It is the simplest use of variables since it only contains the

variable names. In this case it is also necessary to enclose text values with quotes since the prompt window

cannot determine the actual data type for the variables.

INSERT

INTO

 EMPLOYEES

 (

 EMPLOYEE_ID,

 FIRST_NAME,

 LAST_NAME,

 EMAIL,

 PHONE_NUMBER,

 HIRE_DATE,

 JOB_ID,

 SALARY,

 COMMISSION_PCT,

 MANAGER_ID,

 DEPARTMENT_ID

)

 VALUES

 (

 ${EMPLOYEE_ID}$,

http://confluence.dbvis.com/display/UG91/Using+DbVisualizer+Variables#UsingDbVisualizerVariables-ChangingtheDelimiterCharacters
http://confluence.dbvis.com/display/UG91/Using+DbVisualizer+Variables#UsingDbVisualizerVariables-ChangingtheDelimiterCharacters
http://confluence.dbvis.com/display/UG91/Using+DbVisualizer+Variables#UsingDbVisualizerVariables-ChangingtheDelimiterCharacters
http://confluence.dbvis.com/display/UG91/Using+DbVisualizer+Variables#UsingDbVisualizerVariables-ChangingtheDelimiterCharacters

DbVisualizer 9.2 Users Guide

Page of 225 428

 ${FIRST_NAME}$,

 ${LAST_NAME}$,

 ${EMAIL}$,

 ${PHONE_NUMBER}$,

 ${HIRE_DATE}$,

 ${JOB_ID}$,

 ${SALARY}$,

 ${COMMISSION_PCT}$,

 ${MANAGER_ID}$,

 ${DEPARTMENT_ID}$

)

Executing the above SQL will result in the following prompt window:

Using variables with no data type defined shows these as . This means that the specified value will Literal

replace the variable as-is in the SQL statement.

The prompt window has the same look and functionality as the Form Data Editor, i.e. you can sort, filter, insert

pre-defined data, copy, paste and edit cells in the multi line editor, plus a lot of other things. In addition the

prompt window adds two new commands (leftmost in the toolbar and in the form right-click menu).

Set Default

Values

This will set each value to the default value for the variable. If a default value was not

specified in the variable, will shown(null)

Set the value for each variable to the values (matched by name) that was used in the

previous run (if there are no values from a previous run, this button is disabled)

DbVisualizer 9.2 Users Guide

Page of 226 428

Set

Previously

Used Values

The area shows the statement with all variables replaced with the values.SQL Preview

Here is an example of a more complex use of variables utilizing default value, data type and options:

INSERT

INTO

 EMPLOYEES

 (

 EMPLOYEE_ID,

 FIRST_NAME,

 LAST_NAME,

 EMAIL,

 PHONE_NUMBER,

 HIRE_DATE,

 JOB_ID,

 SALARY,

 COMMISSION_PCT,

 MANAGER_ID,

 DEPARTMENT_ID

)

 VALUES

 (

 ${EMPLOYEE_ID||105||BigDecimal||pk ds=7 dt=NUMERIC}$,

 ${FIRST_NAME||David||String||nullable ds=20 dt=VARCHAR}$,

 ${LAST_NAME||Austin||String||ds=25 dt=VARCHAR}$,

 ${EMAIL||DAUSTIN||String||ds=25 dt=VARCHAR}$,

 ${PHONE_NUMBER||590.423.4569||String||nullable ds=20 dt=VARCHAR}$,

 ${HIRE_DATE||2005-06-25 00:00:00||Timestamp||ds=7 dt=TIMESTAMP}$,

 ${JOB_ID||IT_PROG||String||ds=10 dt=VARCHAR}$,

 ${SALARY||4800||BigDecimal||nullable ds=10 dt=NUMERIC}$,

 ${COMMISSION_PCT||(null)||BigDecimal||nullable ds=4 dt=NUMERIC}$,

 ${MANAGER_ID||103||BigDecimal||nullable ds=7 dt=NUMERIC}$,

 ${DEPARTMENT_ID||60||BigDecimal||nullable ds=5 dt=NUMERIC}$

)

This example use the full capabilities of variables. This example is generated by the Script to SQL

 right click menu choice in the tab grid. By default it generatesCommander->INSERT COPY INTO TABLE Data

variables representing the actual values and the characteristics of the columns.

DbVisualizer 9.2 Users Guide

Page of 227 428

To highlight that a variable is part of the clause in the final SQL, it is represented with a green symbol inWHERE

front of the name.

When executing an SQL statement that consist of variables, DbVisualizer replaces each variable with either the

value as a literal or as a parameter marker. Using parameter markers to pass data with a statement is more

reliable than literals. DbVisualizer will automatically generate a parameter marker if the variable has the data

type set and if there is no option specified.nobind

The following will be replaced with a parameter marker:

${Name||rolle||String}$

These will be replaced with the value as a literal in the final SQL:

${Name||rolle}$

${Name||rolle||String||nobind}$

Variables in DbVisualizer may be used anywhere in a statement as long as there is no data type specified.

Changing the Delimiter Characters

You can change which identifiers should be used as the prefix, suffix and part delimiter in a variable expression

in , in the category.Tools->Tool Properties General / Variables

DbVisualizer 9.2 Users Guide

Page of 228 428

9.24.2 Using Parameter Markers

Parameter markers (also referred as or) are commonly used in database bind/host variables place holders

applications where the SQL is composed of static text combined with values represented as markers instead of

actual values. These markers are processed during the preparation of the SQL statement and values are then

bound with the markers. Each database has its recommendations for how and when to use parameter markers

so this is not further discussed here.

Named Parameter Markers (see page 228)

Unnamed Parameter Markers (see page 230)

Get Parameter Types via JDBC (see page 231)

Database Support/Driver Support (see page 232)

DbVisualizer supports the most common syntaxes for parameter markers to comply with the supported

databases. Parameter markers are categorized as either or markers. The following sections named unnamed

explains their respective syntaxes.

It is not possible to mix DbVisualizer variables and parameter markers, or named and unnamed

parameter markers, in the same script. If you do, you will only be prompted for values for one type and

the execution will fail.

Named Parameter Markers

Named Parameter Markers

&name

:name

:{name}:

'name'

These syntaxes are supported natively by a few databases. This format allows only a name for

the parameter and no other settings, such as type or default value. The parameter name is the

name DbVisualizer shows in the prompt window.

Named parameter values are bound at runtime with the markers in the SQL. Some JDBC

drivers/databases requires that the proper data type is set while some are more relaxed. For

named (and unnamed) parameter markers, you may chose data type in the prompt window.

Named parameter markers should only be used in contexts supported by the actual database,

usually for column values. For example, as opposed to a DbVisualizer variable, a parameter

marketer cannot be used for a table or column name.

The only difference between , , and is that the latter two, &name :name :{name} :'name' :{name

 and , allow white spaces in the name.} :'name'

Example

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)

DbVisualizer 9.2 Users Guide

Page of 229 428

Named Parameter Markers

values (null, &FirstName, &LastName, &Address, &Age);

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)

values (null, :FirstName, :LastName, :Address, :Age);

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)

values (null, :{FirstName}, :{LastName}, :{Address}, :{Age});

Read more about .named parameter markers (see page 228)

The following is a sample SQL executed in the SQL Commander:

INSERT INTO EMPLOYEES

 (EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE,

 JOB_ID, SALARY, COMMISSION_PCT, MANAGER_ID, DEPARTMENT_ID)

VALUES

 (:EMPLOYEE_ID, :FIRST_NAME, :LAST_NAME, :EMAIL, :PHONE_NUMBER,

 :HIRE_DATE, :JOB_ID, :SALARY, :COMMISSION_PCT, :MANAGER_ID, :DEPARTMENT_ID);

The prompt window will show the markers with their respective names:

For parameter marker processing to work in the SQL Commander, make sure the SQL->Enable Parameterized

main menu option is checked.SQL

DbVisualizer 9.2 Users Guide

Page of 230 428

To apply the values, close the window and continue with the execution, use key binding (Ctrl+Enter

 on Mac OS X).Command+Enter

Unnamed Parameter Markers

Unnamed Parameter Markers

? The question marker symbol is probably the most supported parameter marker among the supported

databases. It is also the most unintuitive marker since the user has to remember the order of question

marks and the corresponding values.

Since there is no name associated with it, DbVisualizer shows these as , and soParameter 1 Parameter 2

on in the prompt window.

There is no technical difference between how unnamed and named parameter markers are handled

internally in DbVisualizer or when processed by the database. All are bound with a prepared SQL

statement.

Example

insert into EMPLOYEE (ID, FIRST_NAME, LAST_NAME, ADDRESS, AGE)

values (null, ?, ?, ?, ?)

Use named in favor of unnamed parameter markers if there is support in the target database based on the

easier reading of named markers. Read more about .unnamed parameter markers (see page 228)

This is the same SQL as used in the Named Parameter Marker section but here question marks are used as

markers:

INSERT INTO EMPLOYEES

 (EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE,

 JOB_ID, SALARY, COMMISSION_PCT, MANAGER_ID, DEPARTMENT_ID)

VALUES

 (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);

Since we're using the unnamed marker, , the name of each parameter is displayed as , ? Parameter 1

 and so on:Parameter 2

DbVisualizer 9.2 Users Guide

Page of 231 428

Due to the use of unnamed markers it is not very intuitive what parameter correspond to which part in the

statement. The may be handy to get an idea. The field is automatically adjusted based on SQL Preview Type

what data is entered for a value. The data type may be manually set by left-click on the type and choose another

type from the drop-down.

To apply the values, close the window and continue with the execution, use key binding (Ctrl+Enter

 on Mac OS X).Command+Enter

Get Parameter Types via JDBC
The processing of named and unnamed parameter markers is managed by DbVisualizer. By default there is no

data type detection of the target columns identified by the markers and DbVisualizer will initially present these as

 in the prompt window. When changing the value for a parameter in the prompt window, a data analyzer isString

triggered which will automatically detect the type and update the field accordingly.Type

DbVisualizer 9.2 Users Guide

Page of 232 428

Some drivers (far from all) have the capability to detect the real data type for the referenced columns in the SQL

statement. To enable this processing, select the action in the Get Parameter Types via JDBC SQL

 menu. DbVisualizer will then show the correct types in the prompt window.Commander

Having enabled while executing may decrease performance Get Parameter Types via JDBC

substantially as each SQL statement in the script is then pre-processed with the database before the

prompt window is displayed.

Database Support/Driver Support
The support for parameter markers may differ between databases. Please consult the documentation for the

database to see what syntax it supports.

In some situations the database and DbVisualizer support for named parameters might be incompatible. An

example is when using the same parameter name in multiple places in the SQL. When preparing a statement

towards such a database, the database may report that the parameter is only used once. In these cases,

DBVisualizer will trust the driver and revert to generating the names visible in the form as Parameter 1 ,

Parameter 2 and so on.

DbVisualizer 9.2 Users Guide

Page of 233 428

10 Working with Result Sets
You can view result sets in different ways, edit simple result sets, and export or compare them.

10.1 Viewing a Result Set

You can view a result set as a grid, as text or as a chart. Which format to use by default can be specified in the

Tool Properties dialog, in the category under the General tab. Here you can alsoSQL Commander/Result Sets

specify other things, like if empty result sets should be shown at all, if the SQL that produced the result set

should be shown as a tab header tooltip.

Use the buttons to the right in the grid toolbar to select the format. This is an example of the text format.

10.1.1 Viewing as a Grid

When you view the result set as a grid, you have access to the same features as when viewing table data (see

.page 80)

10.1.2 Viewing as Text

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

DbVisualizer 9.2 Users Guide

Page of 234 428

The text format for a result set presents the data in a tabular style. The column widths are calculated based on

the length of each value and the length of the column label.

If you want to combine the text view of a number of result sets into one, select from the Merge Result Sets

result set tab right-click menu. A dialog lets you select the result sets to merge:

10.1.3 Viewing as a Graph

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

To view the result set as a chart, use the rightmost button in the grid toolbar. Please see the Working with

 page for how you can arrange the chart.Charts (see page 237)

10.2 Editing a Result Set

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

DbVisualizer 9.2 Users Guide

Page of 235 428

1.

2.

3.

1.

2.

A result set from a query that fulfills these requirements is editable:

The SQL is a SELECT command,

Only one table is referenced in the FROM clause,

All current columns exist by name (case sensitive) in the identified table.

A result set like this can be edited in the same way as you can .edit table data (see page 92)

If all of the above requirements are fulfilled but the edit controls are still not shown, please try qualifying

the table name with the schema and/or database name.

If you want results to always be read-only, you can enable the setting in the Tool Make Result Sets Read-Only

Properties dialog, in the category under the General tab.SQL Commander/Result Sets

10.3 Exporting a Result Set

You can export a result set as described in or using the Exporting a Grid (see page 247) @export client side

.command (see page 217)

10.4 Comparing Result Sets

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

You can compare a result set grid to tables and/or other result set grids.

To compare the grid data to the data of a table or a another result set:

Open the tab for another table or execute an SQL query to open a result set tab,Data

Select from the right-click menu in one of the tabs to Compare compare their grid content (see page 258)

.

DbVisualizer 9.2 Users Guide

Page of 236 428

10.5 Pinning Result Sets

Existing Result Set tabs are removed when you execute a script again. If you want to save a Result Set tab

between executions, you can "pin" it using the right-click menu choice for the tab header, or by simply Pin Tab

clicking on the tab icon. There is also a choice if you have multiple tabs you want to pin, and Pin All Unpin All

to make them all be replaced at the next execution.

Whether tabs should be pinned by default can be controlled in the Tool Properties dialog, in the SQL

 category under the General tab.Commander/Result Sets

10.6 Show Result Sets in a Separate Window

Results Sets and the Log tabs are located just under editor in a SQL Commander tab. Sometimes you may

need to get the full screen height available for the editor and detach the result set tabs in its own window. To

accomplish this click the symbol at the right-most position in the tab row.

<image of result set tabs with symbol>

Clicking the button while result sets are detached will bring it back into its original location.

DbVisualizer 9.2 Users Guide

Page of 237 428

11 Working with Charts

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Result sets in the SQL Commander and in the Monitor tools can be viewed as charts.

Charting a Result Set (see page 239)

Selecting Category Column (see page 240)

Selecting Series (see page 241)

Chart Type (see page 242)

Chart Preferences (see page 243)

Appearance Preferences (see page 243)

Series Preferences (see page 245)

Zooming (see page 245)

Export (see page 245)

The chart support in DbVisualizer presents data from any result set in a configurable chart displayed in a line,

bar, area or pie style. It offers much of the charting support you find in MS Excel and other specialized charting

tools. Charts may be exported as an image to file, printed and copied to system clipboard for easy sharing with

other tools. Charts are configured and viewed in the and in the SQL Commander (see page 233) Monitor (see

 tool which is really powerful, delivering real time charts of many result sets simultaneously.page 264)

Here are some sample charts:

DbVisualizer 9.2 Users Guide

Page of 238 428

DbVisualizer 9.2 Users Guide

Page of 239 428

11.1 Charting a Result Set

The basic setup of a chart is really easy. Just select one or more columns that should appear as series in the

chart and what column to use as the category (X-axis). Further refinement of the chart can be made in the chart

preferences window.

The normal output view of a result set in the SQL Commander or Monitor window is in a grid style as shown in

the following screenshot. To activate the chart view click the rightmost button in the result tab toolbar:

When switching to the chart view DbVisualizer automatically pick the first date or text column as category and

the first numeric column as serie. In the following example it is the and columns for this specific datelabel id

result set.

DbVisualizer 9.2 Users Guide

Page of 240 428

11.1.1 Selecting Category Column

To change category column click the category drop-down and pick what column to use.

Let the mouse pointer stay on a column name for a second and tip will show what data type it is.

DbVisualizer 9.2 Users Guide

Page of 241 428

11.1.2 Selecting Series

Click the serie button to change what series to display in the chart. This drop-down stay on screen while

de-selecting and selecting series and the changes are directly propagated in the chart. To close the list either

press the button or click outside the list. If only one serie is selected then its name is listed in the button ESC

label. If additional series are selected then the number of selected series are listed in parentheses.

Tip: Press the ALT key while selecting a serie and all currently selected series will be de-selected.

This is the chart after applying category and 2 series:

DbVisualizer 9.2 Users Guide

Page of 242 428

11.1.3 Chart Type

A chart can be displayed as Line, Point, Area, Stacked Area, Bar, Stacked Bar and the Pie type. Select what

type to use in the Chart Type right-click menu or in the chart toolbar:

DbVisualizer 9.2 Users Guide

Page of 243 428

For the Pie chart, only one Serie can be selected.

11.2 Chart Preferences

The chart preferences are used to customize the appearance of the chart such as titles, colors, legend position,

etc. It can also be used to set alternative names for the series in the chart. All appearance settings are

automatically re-used when running subsequent queries in the SQL Commander during the same DbVisualizer

session. If you save a query as a bookmark script then all appearance settings are saved with the chart. Loading

the script at a later time will also load the chart settings.

11.2.1 Appearance Preferences

Use the controls in the tab to customize the layout and style of the chart.General

DbVisualizer 9.2 Users Guide

Page of 244 428

DbVisualizer 9.2 Users Guide

Page of 245 428

Information about the selected setting in the list is displayed at the bottom of the window.

11.2.2 Series Preferences

The default serie name is the column name in the result set. In the tab you can set an alternative label Series

name and also control what series should be visible.

Changes in the Series tab are propagated directly in the chart.

11.3 Zooming

Charts support zooming by selecting a rectangle in the chart area. Selecting another rectangle in that zoomed

area will zoom the chart even further, and so on. To unzoom one level, click the Zoom Out button.

11.4 Export

Charts can be exported in PNG, GIF or JPG formats.

DbVisualizer 9.2 Users Guide

Page of 246 428

The default size of the exported image is the same as it appears on the screen. To change the size, either select

a pre-defined paper size in the Size list or enter a size in pixels.

DbVisualizer 9.2 Users Guide

Page of 247 428

12 Exporting a Grid
You can export any grid using the Export Wizard, e.g. a result set grid, a grid showing tables in a schema, or the

Data tab for a table or view.

Settings page (see page 247)

Data page (see page 249)

Generating Test Data (see page 250)

Preview (see page 253)

Output Destination (see page 253)

Settings Menu (see page 254)

The Export wizard is launched using the button in the grid toolbar () or from the grid's right-click Export

menu. If you want to export just some of the grid rows and columns instead of all data in the grid, select the data

to export and launch the wizard with the right-click menu choice.Export Selection

12.1 Settings page

The first wizard page is the page, containing general properties for how the exported data should be Settings

formatted.

DbVisualizer 9.2 Users Guide

Page of 248 428

Select an output format, file encoding (it is also used to set the encoding in the HTML and XML headers, if you

select one of those formats), and how to quote text data.

Only in DbVisualizer Pro

With the DbVisualizer Free edition, only the CSV and HTML formats are supported.

DbVisualizer 9.2 Users Guide

Page of 249 428

The section is used to define settings that are specific for the selected output format, for instance the Options

column and row delimiters for the CSV format, or the Excel or Excel 2007 format for XSL.

12.2 Data page

Clicking the button in the wizards moves you to the page. Use the columns list to control which Next Data

columns to export and how to format the data for each columns. The list is exactly the same as the column

headers in the original grid, i.e., if a column was manually removed from the grid before launching the Export

Wizard, then it will not appear in this list.

The fields show you how many rows are available and let you specify the number of rows to export.Table Rows

This setting along with the button is especially useful when you use the test data generation feature Add Row

described in the next section.

The columns in this page's grid can be used like this.

Column Descriptions

Export

DbVisualizer 9.2 Users Guide

Page of 250 428

Column Descriptions

Defines whether the column will be exported or not. Uncheck it to ignore the column in the exported

output.

Name The name of the column. This is used if exporting in HTML, XML, XLS, JSON or SQL format.

Column headers are optional in the CSV output format.

Label (

Alias)

When you export a result set grid for a SELECT statement that uses column aliases, this column

holds the alias. If you have also enabled in the section, this value Use any Label (Alias) Options

is used in place of the name.

Type The internal DbVisualizer type for the column. This type is used to determine if the column is a text

column (i.e., if the data should be enclosed by quotes or not).

Text Specifies if the column is considered to be a text column (this is determined based on the type) and

so if the value should be enclosed in quotes.

Value The default variable is simply be substituted with the column value in the exported ${value}$

output. You can enter additional static text in the value field. This is also the place where any test

 are defined.data generators (see page 250)

12.2.1 Generating Test Data

The test data generator is useful when you need to add random column data to the exported output.

The column in the page grid specifies the data to be in the exported output. By default, it contains Value Data

the variable, which is simply replaced with the real column value during the export process. You ${value}$

can also add static values before and after the variable, to be exported as entered.${value}$

Alternatively, you can use test data generator variables in the column. The choices are available in the Value

right-click menu when you edit the column.Value

Function Name Function Call Example

Generate

random

number

${var||

randomnumber(1,

2147483647)}$

Generates a random number between 1 and 2147483647

Generate

random string

of random size

${var||randomtext(

1, 10)}$

Generates random text with a length between 1 an 10

characters

Generate

random value

Picks one of the listed values in random order

DbVisualizer 9.2 Users Guide

Page of 251 428

Function Name Function Call Example

from a list of

values

${var||randomenum(

v1, v2, v3, v4, v5

)}$

Generate

sequential

number

${var||number(1,

2147483647, 1)}$

Generates a sequential number starting from 1. The generator

re-starts at 1 when 2147483647 is reached. The number is

increased with 1 every time a new value is generated.

Here is an example of how to use the test data generators to try out planned changes to the data. Consider this

initial data:

After the changes, the column should not appear in the output and the new should JOB JOB_FUNCTION

contain abbreviated job function codes. To test this, we simply uncheck the checkbox for entry and Export JOB

set the for the to use the function.Value JOB_FUNCTION Generate random value from a list of values

DbVisualizer 9.2 Users Guide

Page of 252 428

Previewing the data (or exporting it) in CSV format results in this:

DbVisualizer 9.2 Users Guide

Page of 253 428

12.3 Preview

The third wizard page is the page, showing the first 100 rows of the data as it will appear when it is Preview

finally exported. This is useful to verify the data before performing the export process. If the previewed data is

not what you expected, just use the back button to modify the settings.

12.4 Output Destination

The final wizard page is the page. The destination field specifies the target destination for Output Destination

the exported data, one of File, SQL Commander or Clipboard.

DbVisualizer 9.2 Users Guide

Page of 254 428

Click on this page to export the grid data to the selected destination.Export

12.5 Settings Menu

If you often use the same settings, you can save them as the default settings for this assistant. If you use a

number of common settings, you can save them to individual files that you can load as needed. Use the Settings

button menu to accomplish this:

Save as Default Settings

Saves all format settings as default. These are then loaded automatically when open an Export Schema

dialog

Use Default Settings

Use this choice to initialize the settings with default values

Remove Default Settings

Removes the saved defaults and restores the regular defaults

Load

Use this choice to open the file chooser dialog, in which you can select a settings file

Save As

Use this choice to save the settings to a file

You can also use settings saved here with the .@export client side command (see page 209)

DbVisualizer 9.2 Users Guide

Page of 255 428

13 Comparing Data

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

With DbVisualizer, you can compare grids and text data, such as scripts or the DDL for two tables or procedures

.

Selecting the Objects to Compare (see page 255)

Comparing Text Data (see page 256)

Comparing Grids (see page 258)

Comparing Cell Values (see page 263)

13.1 Selecting the Objects to Compare

You can open the object chooser via and select two objects available for Compare Objects Tools->Compare

comparison.

If you select , all editors and all sub tabs that you have opened that containText SQL Commander Object View

text, such as and tabs, are listed. There is also an entry for the , DDL Procedure Editor System Clipboard

holding the last text you copied.

DbVisualizer 9.2 Users Guide

Page of 256 428

Selecting lists all Result Set tabs and all sub tabs that you have opened Grids SQL Commander Object View

that contain a grid, for instance the and tabs for a table, or the tab for a schema.Data Columns Tables

To compare two objects, select one each in the and columns and click Original Object Modified Object

.Compare

You can also open the object selection dialog from the right-click menu inside a tab that holds an object that can

be compared. The object shown in that tab is then preselected as the so you only need to Modified Object

select the in the dialog.Original Object

The right-click menu for an editor also contains a entry. This bypasses SQL Commander Compare to Saved

the object selection dialog and opens the window directly, showing you how you have changed the Compare

script since loading it into the editor.

13.2 Comparing Text Data

To compare text data, either select both text object from the dialog or choose from Tools->Compare Compare

the right-click menu in one of them and select the one to compare to. The text compare window shows you how

they differ.

DbVisualizer 9.2 Users Guide

Page of 257 428

The objects are shown side-by-side, with indications about how they differ in the divider between them. The

areas to the left of the original object and to the right of the modified object have markings that also show

sections of differences. You can navigate between the differences using the arrow buttons in the toolbar, or by

clicking the markings to the left and right.

Comparing two texts is pretty straightforward. You can see what has been changed, inserted and deleted, with

row level indications in the divider and details for changed text highlighted in the text panes. A difference may

start on one line and span over multiple lines until a match is found again.

If the modified object (right pane) is editable, you can apply the changes needed to remove the differences, one

by one or all at once.

Along with the difference indications in the divider there are small icons: arrows and cross marks. Clicking on

such an icon updates the modified object to match the original object, by inserting or deleting one or more rows

or updating the text or column values.

If you want to apply all changes needed to make the modified object match the original, you can click on the

 button in the toolbar (the rightmost button).Sync

You can also edit the modified object directly in the window.Compare

DbVisualizer 9.2 Users Guide

Page of 258 428

No matter how you update the modified object, all changes are also applied to the tab where the object

was originally opened. To permanently save the changes, you need to use the button in that tab.Save

If you want to change which object should be considered the original and the modified when comparing them,

you can click the button in the toolbar (the second to rightmost button). One reason for doing this may be Flip

that you want to update the object you originally used as the original instead of the modified object.

13.3 Comparing Grids

To compare grids, either select both grid object from the dialog or choose from the Tools->Compare Compare

right-click menu in one of them and select the one to compare to. The grid compare window shows you how

they differ.

DbVisualizer 9.2 Users Guide

Page of 259 428

Comparing grids is a bit complicated, since each row is a unit in itself, with a unique identifier in the form of a

Key. A difference can therefore not span rows. It is also important that both grids are sorted the same way and

that the column in one grid is compared to the corresponding column in the other grid, otherwise the result is

indeterminably. By default, columns are matched by name, or index if the names differ.

If the default matching is not correct, click the button in the toolbar to manually match Column Configuration

the columns, and optionally select key columns and ignore some columns.

Use the drop down lists to select the column matching the . If a Right Column Name Left Column Name

column does not match another, just leave it blank to exclude it from the comparison.

Use the check boxes to pick the columns that should be used as the key when comparing the Key Column

grids. If you don't care about the value in some columns, e.g. a column that contains a timestamp that may vary

between the grids without being an important difference, you can check the check box for that column to Ignore

exclude it for the comparison.

It gets a bit more complicated if a key column value is changed.

DbVisualizer 9.2 Users Guide

Page of 260 428

DbVisualizer considers a changed key value as one inserted row and one deleted row, as shown in the figure

above. If the grids do not have any declared key columns, all columns are considered to be regular, non-key

columns.

Two grids may also differ in the number of columns they contain. DbVisualizer finds columns that only exist in

one of the grids and excludes their values when comparing the grids. If the column names do not match

between the two grids, open the Column Configuration dialog to manually map the columns.

DbVisualizer 9.2 Users Guide

Page of 261 428

Similarly, DbVisualizer does not consider Binary/BLOB and CLOB columns when comparing, and marks them

as ignored. You can manually specify that CLOB columns should be compared in the Column Configuration

dialog.

DbVisualizer 9.2 Users Guide

Page of 262 428

If the modified object (right pane) is editable, you can apply the changes needed to remove the differences, one

by one or all at once.

Along with the difference indications in the divider there are small icons: arrows and cross marks. Clicking on

such an icon updates the modified object to match the original object, by inserting or deleting one or more rows

or updating the text or column values.

If you want to apply all changes needed to make the modified object match the original, you can click on the

 button in the toolbar (the rightmost button).Sync

You can also edit the modified object directly in the window.Compare

No matter how you update the modified object, all changes are also applied to the tab where the object

was originally opened. To permanently save the changes, you need to use the button in that tab.Save

If you want to change which object should be considered the original and the modified when comparing them,

you can click the button in the toolbar (the second to rightmost button). One reason for doing this may be Flip

that you want to update the object you originally used as the original instead of the modified object.

DbVisualizer 9.2 Users Guide

Page of 263 428

1.

2.

13.4 Comparing Cell Values

In a Data tab or a result set tab, you can also compare the values of two selected cells.

Select the two cells to compare,

Choose from the right-click menu.Compare Selected Cells

The values are compared and shown the same way as when comparing text data, with the exception that editing

is disabled.

DbVisualizer 9.2 Users Guide

Page of 264 428

14 Monitoring Data Changes
With the monitor feature, you can track changes in data over time, viewing the results of one or many SQL

statements either as grids or graphs. Typically, you configure the monitor to run the statements automatically at

certain intervals.

The monitoring feature combined with the capability in DbVisualizer Pro is really charting (see page 237)

powerful, delivering real time charts of many result sets simultaneously. For example, you can use monitoring to

spot trends in a production database, surveillance, statistics, database metrics, and so on.

Any SQL statement that produces a result set can be monitored, and when you monitor multiple statements,

different statements may use different database connections concurrently.

14.1 Creating a Monitored Query

Monitored SQL statements are managed under the node in the tab in the tree area to the left Monitors Scripts

in the main DbVisualizer window.

Monitor table row count (see page 266)

Monitor table row count difference (see page 268)

A monitored SQL statement is associated with information about the target database connection and (optionally)

the catalog (the JDBC term which translates to a database for some databases, like Sybase, MySQL, SQL

Server, etc) and schema. It also has a title, a maximum row count (how many results to keep track of) and a

visibility status (whether the monitored statement result should be included in the Monitors windows, discussed

below). This information is displayed, and can be edited, in the lower part of the tab, along with Scripts

information about the file that holds the monitored statement. If you don't want to see these details, you can

disable it with the toggle control in the right-click menu for a node.Show Details

DbVisualizer 9.2 Users Guide

Page of 265 428

The figure above shows the Incidents/Day monitored statement and the SQL that is associated with it.

The following is an example of the result set produced by the statement:

DbVisualizer 9.2 Users Guide

Page of 266 428

The interesting columns in the result are the and . The and are there just to get Month Count Year MonthNum

the correct ascending order of the result.

You can create and work with monitored statements in the same way as with a Bookmark. The main difference

is how they are used and a couple of additional ways monitored statements can be created. For information

about how to manually create, manage and share monitored statements, please see the Managing Frequently

 page. The following sections describe how you can get help creating the bookmarks Used SQL (see page 185)

for a couple of cases that are commonly used for monitoring.

14.1.1 Monitor table row count

It is very common to want to keep track of how the number of rows in a table varies over time. The right-click

menu in the grid for a table or result set therefore has a operation that creates a Create Row Count Monitor

monitored statement for you automatically.

It creates a monitor with SQL for returning a single row with the timestamp for when the monitor was executed

and the total number of rows in the table at that time. Every time the monitor is executed, a new row is added to

the grid, up to a specified maximum number of rows. When the maximum row limit is reached, the oldest row is

removed when a new row is added. Example:

PollTime RowCount

2003-01-23 12:19:10 43123

DbVisualizer 9.2 Users Guide

Page of 267 428

PollTime RowCount

2003-01-23 12:11:40 43139

2003-01-23 12:21:10 43143

2003-01-23 12:22:40 43184

… …

The SQL for this monitor uses two variables, and . These variables are substituted with dbvis-date dbvis-time

the current date and time, formatted according to the corresponding Tool Properties settings. The reason for

using these variables instead of using SQL functions to retrieve the values is simply that it is almost impossible

to get the values in a database-independent way. Another reason is that we want to see the client machine time

rather than the database server time. You can, of course, modify the SQL any way you see fit, as long as the

 and labels are not changed.PollTime RowCount

select '${dbvis-date}$ ${dbvis-time}$' as PollTime,

 count(*) as RowCount

from Computers

DbVisualizer keeps the result for previous executions, up to the specified maximum number of rows, so that you

can see how the result changes over time. You define the maximum number of rows in the Max Row Count

field in the details area at the bottom of the Scripts tab. This property is initially set to 100 when you use Create

 to create the monitor.Row Count Monitor

DbVisualizer 9.2 Users Guide

Page of 268 428

You can change the value to limit or extend the number of rows that DbVisualizer should keep. Setting it to 0 or

a negative number tells DbVisualizer to always clear the grid between executions of monitors.

14.1.2 Monitor table row count difference

In addition to tracking the number of rows in a table over time, you may want to see by how many rows the

value changes. You can create a monitor for this purpose with the operation, Create Row Count Diff Monitor

available in the right-click menu for the grid.

In addition to the , the reports the difference between the number Row Count Monitor Row Count Diff Monitor

of rows in the last two executions:

PollTime RowCount RowCountChange

2003-01-23 12:19:10 43123 0

DbVisualizer 9.2 Users Guide

Page of 269 428

PollTime RowCount RowCountChange

2003-01-23 12:11:40 43139 16

2003-01-23 12:21:10 43143 4

2003-01-23 12:22:40 43184 41

… … …

The SQL for this monitor adds a third column, named . It utilizes the fact that DbVisualizer RowCountChange

automatically creates variables for the columns in a monitor result set, holding the values from the previous

execution. The column is set to the value returned by the count(*) aggregate function for theRowCountChange

current execution minus the value from the previous execution, held by the variable. All columns in aRowCount

monitor result set can be used like this to reference values from the previous execution of the monitor.

select '${dbvis-date}$ ${dbvis-time}$' as PollTime,

 count(*) as RowCount,

 count(*) - ${RowCount||count(*)}$ as RowCountChange

from Computers

14.2 Running a Monitored Query

The Monitor window, launched via the menu option, is where you active monitors and look at Tools->Monitor

the results. The monitor tabs can be rearranged in the same way as all other tabs, pretty much any way you like.

Please see for details.Getting the Most Out of the GUI (see page 32)

The monitor results can be viewed only as grids in DbVisualizer Free, while DbVisualizer Pro adds the capability

to view them as charts or text.

DbVisualizer 9.2 Users Guide

Page of 270 428

The Monitor window has toolbar at the top with an field and a box. The Auto Reload Interval Adjust Auto

l field is used to control how often, in seconds, to execute the monitors when auto update is Reload Interva

running. The specified number of seconds may be increased automatically by DbVisualizer if the total execution

time for all monitors is longer than the specified value. Check the box and the Monitor feature will Adjust

automatically increase the number of seconds so that all monitors will complete before next auto-update.

The rest of the window holds result areas for each monitored statement with the attribute enabled. Each Visible

individual monitor result tab or window may also have a toolbar with controls that apply just to that result. The

screenshot is from DbVisualizer Pro, with buttons in the toolbar for the selected monitor; these buttons are View

not included in DbVisualizer Free.

The main toolbar buttons have the following functions:

Toolbar Button Description

Close Closes the Monitor window

Reload Reloads all results (i.e., executes all monitors and updates the result sets)

Locate Current Locates and select the monitor node in the Scripts tab corresponding to the currently

selected result

Clear Current Clears the currently selected result

Clear All Clears all results

Show as Tabs Shows the results as collapsed tabs

Show as Windows Shows the results as tiled tabs

DbVisualizer 9.2 Users Guide

Page of 271 428

Toolbar Button Description

Show Grids Shows all results as grids

Show Text Shows all results as text

Show Chart Shows all results as graph in the selected chart type

Show/Hide Chart

Legends

Toggle this to show/hide chart legends

Show/Hide Monitor

Toolbars

Toggle this to show/hide toolbars for each monitor

Start Monitors Starts auto-update of all monitors, repeatedly executing all statements at the intervals

specified by the Auto Reload Interval field

Stop Monitors Stops the auto-update

In the Tool Properties dialog, you can enable and Show Monitor Window at Startup Start Monitors

, in the category under the General tab.Automatically Monitor

DbVisualizer 9.2 Users Guide

Page of 272 428

1.

2.

3.

4.

15 Accessing Frequently Used Objects
When you work on many different tasks, it is important to easily find and use the data and scripts you need.

DbVisualizer helps you by keeping the tabs you use open between sessions and letting you organize references

to objects and scripts.

15.1 Keeping Tabs Open Between Sessions

If you often work with the same objects and a few scripts, you can ensure that the Object View and SQL

Commander tabs for these objects remain open between DbVisualizer sessions.

Open ,Tools->Tool Properties

Select the category,Appearance/Tabs

Enable one or both of and Preserve SQL Commander tabs between Sessions Preserve Object View

,tabs between Sessions

Click or to apply the new settings.Apply OK

This feature is enabled by default for SQL Commander tabs but not for Object View tabs.

The content of the SQL Commander tabs is saved at regular intervals so when you restart DbVisualizer, the

content is the same as where you left off.

For Object View tabs, you can also enable . By default, Object View Preserve Object View tabs at Disconnect

tabs for objects that belong to a connection are closed when it is disconnected.

15.2 Using Favorites

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

Navigating the tab tree down to the object can be quite time consuming for database objects that Databases

you work with often. By adding these objects to the Favorites toolbar, you have one-click access to them instead

. In addition to database objects, you can also add script files to the Favorites toolbar.Bookmark (see page 185)

DbVisualizer 9.2 Users Guide

Page of 273 428

When you click on a database object in the Favorites toolbar, the corresponding object is opened in an Object

View tab. If you're not connected to the database the object belongs to, a connection is automatically

established. Clicking on a Bookmark in the Favorites toolbar opens it in an SQL Commander tab.

You can also easily find the corresponding object in the tab or tab tree using the Databases Scripts Select

 right-click menu item.Target Object

DbVisualizer 9.2 Users Guide

Page of 274 428

The easiest way to add an item to the Favorites toolbar is to select the item in the tab tree or the Databases

 tab tree, drag it with the mouse key depressed and drop it in the Favorites toolbar by releasing the mouseScript

button. If you have created Favorite folders, you can also drop the item on a folder.

You can also use the right-click menu operation for the database object or Bookmark. This Add to Favorite

opens a dialog where you can add the item, at the top level or in an existing or new Favorite folder.

Use the tab in the navigation area to organize your favorites.Favorites

Here you can add folders and drag and drop entries between them. A favorite folder works as a drop-down

menu in the Favorites toolbar. Double-click a favorite to open the target script file in the SQL Commander or

database object in the Object View.

You can also delete and rename entries here. The right-click menu for an entry also contains entry-type

dependent operations, such as executing a Bookmark and open a database object in a separate window.

To sort the favorites, select from the right-click menu for any favorite. The sorting critera can be defined in Sort

the dialog that pops up.

DbVisualizer 9.2 Users Guide

Page of 275 428

15.3 Using Scripts

A script is a file with one or more SQL statements that you can edit and execute in an SQL Commander tab.

You can keep a script as an ordinary file anywhere in the file system and load it into an SQL Commander tab (

 when needed, but managing it as a under the Scripts tab is more see page 159) Bookmark (see page 185)

convenient as it also keeps information about which connection you used it with last, among other things.

DbVisualizer 9.2 Users Guide

Page of 276 428

16 Delimited Identifiers and Qualifiers
Delimited Identifiers must generally be used for database object with names that contain special characters,

reserved words or mixed case. Qualifiers are needed when referring to an object in a different schema/catalog

than the current one. DbVisualizer uses delimited, qualified identifiers in all SQL it automatically executes in

response to user interaction, such as when loading the Data tab for a table, dropping a stored procedure or

getting metadata for a DDL statement.

For the features where DbVisualizer generates SQL that you can then execute, you can control if you want to

use delimited identifiers and/or qualified object names. In the Properties tab for a connection, or in the Tool

Properties dialog for a database type under the Database tab, you find the and Delimited Identifiers Qualifiers

categories.

In the Delimited Identifiers category you can specify which delimiter characters to use, e.q. double-quotes or

square brackets, and for which features to use them: (all SQL generating features), Scripting Auto Completion

, and ./Query Builder Export

In the Qualifiers category you can specify for which features to use them, and also if column names should be

qualified with the table name for the Scripting and the Auto Completion/Query Builder features. For database

types that supports fully qualified named (both database and schema qualifiers), you can enable fully qualified

names in the References/Navigator Graphs and for the Auto Completion/Query Builder features.

DbVisualizer 9.2 Users Guide

Page of 277 428

1.

2.

3.

4.

5.

1.

2.

3.

4.

17 Handling Transactions
Database transactions are intended to make sure operations performed simultaneously do not cause data

integrity problems.

By default, DbVisualizer commits all changes immediately but you can disable this to have full control over the

transactions. You can also set an appropriate transaction isolation level for your connections.

17.1 Changing the Auto Commit Setting

Auto Commit means that each SQL statement successfully executed in an SQL Commander is committed

automatically, permanently changing the database. This is the default for a connection, but you can change it at

different levels.

Changing Auto-Commit for a Database Type (see page 277)

Changing Auto-Commit for a Connection (see page 277)

Changing Auto-Commit for an SQL Commander tab (see page 277)

Changing Auto-Commit for a Statement Block (see page 278)

17.1.1 Changing Auto-Commit for a Database Type

Open ,Tools->Tool Properties

Select the tab,Database

Expand the node for the database type, e.g. Oracle,

Select the category,Transaction

Uncheck the checkbox.Auto Commit

17.1.2 Changing Auto-Commit for a Connection

Double-click the connection node in the tab tree to open an tab,Databases Object View

Select the tab,Properties

Select the category under the node for the database type, e.g. ,Transaction Oracle

Uncheck the checkbox.Auto Commit

17.1.3 Changing Auto-Commit for an SQL Commander tab

Use the toggle item, or,SQL Commander->Turn On/Off Auto Commit

Use the corresponding toggle button to the right in the SQL Commander toolbar.

DbVisualizer 9.2 Users Guide

Page of 278 428

1.

2.

3.

4.

17.1.4 Changing Auto-Commit for a Statement Block

You can use the command in a script to enable or disable auto commit for different blocks:@set autocommit

@set autocommit off;

INSERT INTO SCOTT.EMP (EMPNO, ENAME, JOB, MGR, HIREDATE) VALUES(61, 'Boo', 2, 1, '2013-06-20');

INSERT INTO SCOTT.EMP (EMPNO, ENAME, JOB, MGR, HIREDATE) VALUES(62, 'Hoo', 2, 1, '2013-07-01');

INSERT INTO SCOTT.EMP (EMPNO, ENAME, JOB, MGR, HIREDATE) VALUES(63, 'Zoo', 2, 1, '2013-07-04');

@set autocommit on;

17.2 Setting Transaction Isolation

When you connect to a database that is concurrently modified by other users and processes, the Transaction

Isolation Level specifies how changes made by others will affect you and how your changes will affect others.

To set the Transaction Isolation Level for a connection,

Double-click the connection node in the tree to open an tab for it,Databases Object View

Select the tab,Properties

Select the category,Transaction

Pick an appropriate from the drop-down list.Transaction Isolation Level

The following levels are supported.

Level Transactions Dirty

Reads

Non-Repeatable

Reads

Phantom

Reads

TRANSACTION_NONE Not

supported

N/A N/A N/A

TRANSACTION_READ_COMMITTED Supported Prevented Allowed Allowed

TRANSACTION_READ_UNCOMMITTED Supported Allowed Allowed Allowed

TRANSACTION_REPEATABLE_READ Supported Prevented Prevented Allowed

TRANSACTION_SERIALIZABLE Supported Prevented Prevented Prevented

A dirty read occurs when transaction A reading a value before transaction B has made permanent, i.e. before it

has been commited.

DbVisualizer 9.2 Users Guide

Page of 279 428

A non-repeatable read occurs when transaction A retrieves a row, transaction B subsequently updates the row,

and transaction A later retrieves the same row again. Transaction A retrieves the same row twice but sees

different data.

A phantom read occurs when transaction A retrieves a set of rows satisfying a given condition, transaction B

subsequently inserts or updates a row such that the row now meets the condition in transaction A, and

transaction A later repeats the conditional retrieval. Transaction A now sees an additional row. This row is

referred to as a phantom.

The default level is database dependent.

DbVisualizer 9.2 Users Guide

Page of 280 428

1.

18 Database Connection Options
The database connection is a central concept in DbVisualizer.

Learn how to configure it to your needs, how to use special features like connecting through an SSH tunnel,

using Single-Sign-On, organizing the connections, and much more.

18.1 Setting Up a Connection Manually

To access a database with DbVisualizer, you must first create and setup a Database Connection. The easiest

way to set up a connection is to use the , but you can also do it manually.Connection Wizard (see page 17)

18.1.1 Setting Up a Connection Manually

Create a new connection from and click when Database->Create Database Connection No Wizard

prompted. An tab for the new connection is opened,Object View

DbVisualizer 9.2 Users Guide

Page of 281 428

1.

2.

3.

4.

5.

6.

7.

Enter a name for the connection in the field,Name

Leave the as Database Type Auto Detect,

Select an installed JDBC driver (marked with a green checkmark) from the Driver (JDBC) list (see

 for how to install a JDBC driver manually),Installing a JDBC Driver (see page 409)

Enter information about the database server in the remaining fields (see below for details),

Verify that a network connection can be established to the specified address and port by clicking the Ping

 button,Server

If Ping Server shows that the server can be reached, click to actually connect to the database Connect

server.

See for some tips if you have problems connecting to the Fixing Connection Issues (see page 402)

database.

DbVisualizer 9.2 Users Guide

Page of 282 428

Alternatively, you can set the to (this is the only choice for some custom JDBCSettings Format Database URL

drivers). This replaces the fields for information about the database server with a single field, Database URL

where you can enter the JDBC URL.

The information about the database server that needs to be entered depends on the which JDBC driver you use.

For most drivers, you need to specify:

Field Description

Database Server The IP address or DNS name for the server where the database runs.

Database Port The TCP/IP port used by the database.

Database Userid The database user account name. Enter to not send an account name.(null)

Database Password The database user account password. Enter to not send a password.(null)

For some database such as Oracle, you may use a instead of specifying the server TNS name (see page 297)

and port. Other drivers may add more fields that are driver specific.

You may also optionally specify and Options, such as:SSH tunneling information (see page 294)

Option Description

Auto Commit Check if you want to enable auto commit in the SQL Commander by default for the

connection.

Save Database

Password

Check if you want the password to be saved (encrypted) between sessions.

Connection Mode One of , or or to select which set of Development Test Production Permissions (see

 to use.page 282)

Additional options are available for some JDBC drivers, such as for the Authentication Method (see page 298)

SQL Server jTDS driver.

See the page for related topics.Configuring Connection Properties (see page 282)

18.2 Configuring Connection Properties

In addition to the in the tab, there is also a collection basic connection information (see page 17) Connection

of connection properties. Which properties are available depends on the selected for the Database Type

database connection in the Connection tab. Some database types have more properties than others. Which

edition of DbVisualizer you use also affects which connection properties are available.

Properties for a connection can be defined at two different levels:

DbVisualizer 9.2 Users Guide

Page of 283 428

Tool Properties (Database tab)

These apply to all database connections of the specific database type.

Connection Properties

These apply only to a specific database connection.

All supported database types (Oracle, Informix, SQL Server, DB2, MySQL, etc.) are listed in the tab Database

in the window. For each database type, there are a number of properties that are applied to Tool Properties

any database connection of that type. This means, for instance, that a database connection defined as being a

PostgreSQL database type will use the PostgreSQL properties defined in . The Connection Tool Properties

Properties can then be used to override some settings specifically for one database connection. The advantage

with this inheritance model is that property changes that apply to all connections can be made in one place,

instead of having to apply a common setting for every database connection of a specific database type.

The Connection Properties are available in the sub tab in the the database connection's Properties Object

 tab.View

The tab is organized basically the same way as the window. The main difference isProperties Tool Properties

that the list contains only the categories that are applicable to this database connection. Briefly, the categories

are:

DbVisualizer 9.2 Users Guide

Page of 284 428

Database Profile

Driver Properties

Oracle (The current Database Type)

Authentication

Delimited Identifiers

Qualifiers

Connection Keep-Alive

Physical Connection

Transaction

Encoding

SQL Statements

Connection Hooks

Color and Border

SQL Commander

Query Builder

Data Types

Explain Plan

Objects Tree

The and categories are available only in the tab and not in Database Profile Driver Properties Properties

. The page explains the and categories, while the other Tool Properties Database Profile Driver Properties

categories are described in pages that describe feature the property applies to.

Additional categories may appear in the connection properties depending on the type of database. An example

is the category for Explain Plan for the databases where this feature is supported.

The category is used to select whether a profile should be automatically Database Profile (see page 318)

detected and loaded by DbVisualizer, or if a specific one should be used for the database connection. The

default strategy is to a database profile.Auto Detect

DbVisualizer 9.2 Users Guide

Page of 285 428

The way DbVisualizer auto detects a profile is based on the setting of in the Database Type

 tab. If the is also set to , DbVisualizer first detects the Connection Database Type Auto Detect

database type based on the JDBC information, and then detects the profile based on the database

type.

There is rarely a reason to use another setting than , but if you manually choose a database profile,Auto Detect

this choice will be saved between invocations of DbVisualizer.

The category is used to fine tune a JDBC driver before the database connection is Driver Properties

established.

DbVisualizer 9.2 Users Guide

Page of 286 428

1.

2.

The list of parameters, their default values and parameter descriptions are determined by the JDBC driver used

for the connection. Not all drivers supports additional driver properties. To change a value, just modify it in the

list. The first column in the list indicates whether the property has been modified or not, and so, whether

DbVisualizer will pass that parameter and value onto the driver at connect time.

New parameters can be added using the buttons to the right of the list.

18.3 Copying an Existing Connection

To copy an existing connection and use as the basis for a new:

Select the original connection node in the tab tree,Databases

Use the to create a copy,Database->Duplicate Database Connection

The Object View tab for the copied connection is opened where you can make adjustments.

18.4 Edit Multiple Database Connections

DbVisualizer 9.2 Users Guide

Page of 287 428

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

There are situation when you may need to change one or several connection settings for multiple database

connections at the same time. Instead of doing this one connection at a time, the connections editor come in

handy.

To open the connections editor select multiple database connections in the Databases tab, right-click and chose

.Edit Multiple Connections

The connections editor will show only those fields that are commonly available for the database connections

being edited.

The window has the following columns:

Update: Indicates if the value is edited. You may manually uncheck this to indicate the setting should not

be updated

Value: Enter the new value here. Once the field is being edited its background will change and the

Update box is checked.

DbVisualizer 9.2 Users Guide

Page of 288 428

1.

2.

18.4.1 Changing the database driver

The setting is the main setting that controls what properties are available for a database Driver (JDBC)

connection. Once Driver (JDBC) has been edited its checkbox cannot be unchecked.Update

18.5 Removing a Connection

To remove a connection,

Select the connection node in the Database tab tree,

Use the menu choice to remove the connection.Database->Remove Database Connection

18.6 Organizing Connections in Folders

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

If you work with many database connections, you can use folder objects to organize and group them in the tree.

Folder objects can have child folder objects in an unlimited hierarchy.

Use the and menu choices to create and remove folder Database->Create Folder Database->Remove Folder

objects. You can drag and drop folders and other objects to move them to a new location in the tab Databases

tree.

DbVisualizer 9.2 Users Guide

Page of 289 428

1.

2.

3.

4.

1.

2.

3.

18.7 Rearranging Connections and Folders

You can sort the nodes under the node or a folder node in the Databases tab:Connections

Select the Connections node or a folder node,

Open the Sort dialog from the right-click menu,

Select the sort order and where to place nestled folder,

Click .OK

To move an individual connection node or folder node:

Select one or more nodes,

Drag the node(s) to the new location,

Drop the node.

18.8 Setting Common Authentication Options

DbVisualizer lets you handle authentication in a manner that suits your balance between security and

convenience.

Userid and password information is generally information that should be handled with great care. By default,

DbVisualizer saves both the Database Userid and Database Password (encrypted) for each database

connection. The default for is to save the SSH Userid but not the SSH Password (or Key SSH (see page 294)

Pass-phrase). You can change this behavior to fit your preferences. You specify how to handle the Database

Userid and Password in the category of the tab. The same options are available for Authentication Properties

the SSH Userid and Password in the category in the tab of the Database Connection/SSH Settings General

 window.Tool Properties

The and properties can be enabled to tell DbVisualizer to automatically Require Userid Require Password

prompt for userid and/or password when a connection is to be established if they are not specified for the

connection. The following dialog is displayed if requiring both userid and password.

DbVisualizer 9.2 Users Guide

Page of 290 428

Since a password may need to be handled with great care, you can also specify for how long it should be saved,

if at all. If is selected, DbVisualizer ensures that the Password field is cleared Clear Password at Disconnect

as soon as the connection is terminated. With , it is cleared when you shut down Save During a Session

DbVisualizer. To keep the password between sessions, select . If you use Save Save Between Sessions

Between Sessions, we recommend that you also set a .Master Password (see page 290)

18.9 Setting a Master Password

When you use Save Between Sessions for database passwords and SSH passwords or pass-phrases, they

are by default encrypted using a static key. The same is true for the Proxy password if you have specified one.

Master Password that is then used instead of the static key to encrypt all For better security, you can specify a

passwords and pass-phrases. This way, only you know the information needed to decrypt the data. The

algorithms used for encryption with a Master Password are also more advanced, minimizing the risk that the

data can be decrypted by brute force.

DbVisualizer 9.2 Users Guide

Page of 291 428

1.

2.

3.

1.

2.

Using a Master Password does, however, mean that if you forget it, there is no way to retrieve it and therefore

no way to decrypt the saved passwords. It also means that the encrypted passwords cannot be read by a

DbVisualizer version earlier than 9.2.

If you forget the Master Password, it cannot be recovered. The only way forward is to reset the Master

Password, which also clears all passwords encrypted with it.

Passwords encrypted with a Master Passwords cannot be used in DbVisualizer version earlier than 9.2

. If you set a Master Password in 9.2 and then use an earlier version, you will get "invalid password"

errors when trying to connect with a saved password. You must enter the database or SSH password

again in the earlier version, or go back to using DbVisualizer version 9.2 or later.

18.9.1 Specifying a Master Password

To use a Master Password for encoding of passwords saved between sessions:

Open and select the d category,Tools->Tool Properties General/Master Passwor

Enter a password matching the described rules in both the and New Password Confirm New Password

fields,

Click and then confirm that you want to do this after reading the warning about what it implies.Apply

The passwords for all connections with chosen for the password are now encrypted Save Between Sessions

with the Master Password. The same goes for the SSH passwords/pass-phrases if you have selected to have

them saved between sessions, as well as the proxy password, if any.

18.9.2 Changing a Master Password

If you want to change the Master Password:

Open and select the category,Tools->Tool Properties General/Master Password

DbVisualizer 9.2 Users Guide

Page of 292 428

2.

3.

1.

2.

Enter the current password in the field and the new password in both the Current Password New

 and fields,Password Confirm New Password

Click Apply.

The saved passwords are then decrypted with the current Master Password and re-encrypted with the new.

18.9.3 Resetting the Master Password

If you have forgotten the Master Password, or simply no longer want to use one, you can reset it:

Open and select the category,Tools->Tool Properties General/Master Password

Click the button and confirm that you want to do this.Reset Master Password

Note that all passwords encoded with the Master Password are then immediately cleared and there is

no way to recover them.

18.9.4 Connecting with a Master Password specified

When you have a Master Password specified, you will be prompted to enter it the first time within a DbVisualizer

session that you need to connect with a saved password. From then on, you can make other connections with

saved passwords without being prompted until you restart DbVisualizer.

DbVisualizer 9.2 Users Guide

Page of 293 428

1.

2.

1.

2.

1.

2.

3.

18.9.5 Manually Requesting the Master Password for New

Connections

You have two options to manually require being prompted for the Master Password again after entering it once

within a DbVisualizer session:

Select ,Database->Require Master Password at Next Connect

Open , select the category and enable Tools->Tool Properties General/Database Connection Require

.Master Password after All Connections Closed

18.9.6 Showing the Encrypted Password in Cleartext

When you have specified a Master Password, you can view the saved database password or SSH password/

pass-phrase in cleartext.

Right-click on the password field label and select ,Show Password

Enter the Master Password when prompted.

18.9.7 Declaring a Master Password Rule

A Master Password must have at least eight characters of any kind by default, but you can declare your own

rule using a regular expression in an installation configuration file:

Open the file,DBVIS-HOME/resources/dbvis-custom.prefs

Enter a regular expression as the value of the property,dbvis.-MasterPasswordRule

Enter a description of the rule for showing the user in Tool Properties as the value of the dbvis.-

 property.MasterPasswordRuleDescr

The regular expression for the default rule is . It is easy to change the number in this expression to any .{8,}

number you want. There are regular expressions that can describe pretty much any rule you can come up with.

For instance, this rule requires at least nine characters, with at least one symbol, one digit, one uppercase

character, and one lowercase character:

(?=.{9,})(?=.*?[^\\w\\s])(?=.*?[0-9])(?=.*?[A-Z]).*?[a-z].*

If you cannot adopt these examples to your own policy, you can search the Internet for other examples of "

regular expressions for password validations".

DbVisualizer 9.2 Users Guide

Page of 294 428

1.

2.

3.

4.

5.

18.10 Using Connection Keep-Alive

Databases can be configured to terminate sessions that have been idle for some time, and networks often does

the same with TCP/IP connection. The Connection Keep-Alive feature helps preventing connections to be

closed due to time-outs of this kind by periodically executing a simple SELECT statement.

Network connections may be terminated for other reasons than a time-out in the database or at the

network layer, e.g due to a restart of the database or a network element. The Connection Keep-Alive

feature does not help in those cases. Also note that connections that are busy, e.g. actively used to run

a script, are not "pinged". If a SELECT statement or stored procedure takes a very long time to

complete, it is therefore possible that a time-out happens at the network level. In this case, the network

configuration must be tuned to handle long running statements without timing out.

To enable Keep-Alive for a connection:

Open the Object View tab for the connection,

Open its Properties tab,

Select the Connection Keep-Alive category,

Enable Connection Keep-Alive and optionally change the idle time interval,

Click the Apply button.

The SELECT statement used for Connection Keep-Alive can also be specified in the properties pane.

For supported databases, it is set to a SELECT statement that has been verified to work for the

database type but for connections that use the Generic profile, you must specify a valid SELECT

statement in order for this feature to work. For many databases, or SELECT 1 SELECT 1 FROM

 should work.aSmallTable WHERE 1 = 0

18.11 Using an SSH Tunnel

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

A database that sits behind a firewall cannot be accessed directly from a client on the other side of the firewall,

but it can often be accessed through an SSH tunnel. The firewall must be configured to accept SSH connections

and you also need to have an account on the SSH host for this to work.

DbVisualizer 9.2 Users Guide

Page of 295 428

If you need to access a database that can only be accessed vi an SSH tunnel, you need to specify additional

information in the Use SSH Tunnel area of the Connection tab.

This area is only shown when the settings format is selected, and only for databases Server Info

identified by at least a and a (i.e. not for embedded databases or Database Server Database Port

when using the TNS Connections Type for an Oracle database, or similar).

Enable SSH tunneling by clicking on the checkbox. When it is enabled, five additional fields are shown.

DbVisualizer 9.2 Users Guide

Page of 296 428

The is the name or IP address for the host accepting SSH connections. The SSH Host is typically theSSH Host

same as the Database Server. Enter the port for SSH connections in the field. The default value is 22.SSH Port

You may also enter the userid and password for your SSH host account in the and SSH Userid SSH Password

fields, but see for other options. Alternatively, you can Setting Common Authentication Options (see page 289)

enter the path to a private key file (using either the RSA or DSA algorithms) in the Private Key File field. The

SSH Password field is then replaced by a Key Passphrase field where you can enter the passphrase if the

private key is protected with one.

When SSH tunneling is enabled, a tunnel is established when you connect to the database and the connection

is then made through the tunnel by constructing a JDBC URL that uses information from both the Connection

and Use SSH Tunnel sections.

If you're familiar with using the command to set up a tunnel manually, you may be interested in more detailsssh

. The tunnel corresponds to the tunnel you would set up with the ssh command like this:

ssh -p <SSHPort> -L<LocalPort>:<DatabaseServer>:<DatabasePort> <SSHUserid>@<

SSHHost>

where the placeholders correspond to the fields in the Connect and Use SSH Tunnel sections, except for <

LocalPort> which is any available port, determined at connect time.

Note that when using an SSH tunnel, the is evaluated on the SSH host. If the Database Server

database server is running on the SSH host, you can therefore set to in Database Server localhost

case the database only accepts local connections.

The JDBC URL is constructed using 127.0.0.1 as the Database Server portion and <LocalPort> as the

Database Port portion, e.g. like this for the Oracle Thin driver when <LocalPort> is 50538:

jdbc:oracle:thin@127.0.0.1:50538/XE

In other words, the JDBC driver connects to the SSH tunnel's local port, which then forwards all communication

to the database server.

The URL that is used for the connection is shown at the top of the tab for the database connection Object View

when a connection is established, along with a certificate icon if the connection is made through an SSH tunnel.

DbVisualizer 9.2 Users Guide

Page of 297 428

If you use the SSH Tunnel feature, you may also want to configure a few things in . In Tools->Tool Properties

the category under the General tab, you can specify an SSH Keep-Alive Database Connection/SSH Settings

Interval to minimize the risk that the tunnel is disconnected due to inactivity, and an SSH Known Hosts File so

you don't have to accept connections to known SSH hosts every time you connect.

18.12 Using Oracle TNS Names

All information for connecting to an Oracle database may be stored in a file, with each database tnsnames.ora

instance defined by a TNS alias. If you want to create a connection in DbVisualizer that uses the information

from this file, you must first tell DbVisualizer where it is stored by setting either the environment TNS_ADMIN

variable to the path of the folder holding the file, or making sure it is located in the ORACLE_HOME/network/

 folder and that the environment variable is set.admin ORACLE_HOME

When this configuration is done, you can select from the list for the Oracle connection TNS Connection Type

and then pick the TNS alias from a list of all aliases found in the file.

DbVisualizer 9.2 Users Guide

Page of 298 428

18.13 Using SQL Server Single-Sign-On or Windows

Authentication

With Microsoft SQL Server, you can either let the database server or a Windows domain server handle the

authentication. The database server handles it by default using the database user and password you enter for

the connection.

To let a Windows domain server handle the authentication instead, you must use the JDBC SQL Server (jTDS)

driver (bundled with DbVisualizer),

If you run DbVisualizer on a Windows OS client in the same domain as the SQL Server database, leave the

 and fields in the tab empty. This is also known as Database User Database Password Connection

Single-Sign On (SSO).

DbVisualizer 9.2 Users Guide

Page of 299 428

SSO only works if you installed DbVisualizer using an installer, not if you used an installation archive,

because the installer also installs the DLL files needed for SSO.

If you run DbVisualizer on another OS in a network with a Windows domain server, select from the Windows

 list in the area in the tab and enter the name. You must Authentication Method Options Connection Domain

also enter the domain user and and password in the and fields. The driverDatabase User Database Password

then authenticates with the domain server and then uses those credentials to log in to the database server.

18.14 Using Variables in Connection Fields

Variables can be used in some of the tab fields. You can use variables in the , and Connection Name Userid

 (both Database and SSH) fields with the settings format, or in the field Password Server Info Database URL

when using this settings format. This can be a useful alternative to having a lot of similar database connection

objects. Several variables can be in a single field, and default values can be set for each variable. The following

figure shows an example with variables, described in more detail in the Using DbVisualizer Variables (see page

 page.221)

The following variables appear in the figure:

${Name}$

${Database Host||dbhost2||||choices=[dbhost1,dbhost2,dbhost3]}$

${Port||1521}$

${SID||ORCL}$

All of these variables define a default value after the "||" delimiter, except for the variable, which has ${Name}$

no default value. The default values appear in the connect dialog when you ask for a connection to be

established. The variable includes the choices option, with a comma separated list of ${Database Host}$

choices that should appear in a drop-down list. The drop-down list is editable, so the user is not locked into the

choices from the list.

The following figure shows the connect dialog based on the connection definition shown above.

DbVisualizer 9.2 Users Guide

Page of 300 428

1.

2.

3.

4.

5.

Enter the appropriate information in the fields and then press the button to establish the connection. Connect

When the connection is established, DbVisualizer automatically substitutes the variables in the Connection tab

with the values entered in the connect dialog. At disconnect from the database, they revert back to the original

variable definitions.

18.15 Automatically Connecting at Startup

If you want to automatically connect to a database when you start DbVisualizer:

Open the sub tab in the connections Object View tab,Properties

Select the database type category in the tree, e.g. the node named Oracle for an Oracle connection,

Enable ,Connect when "Connect All"

Open and select the Database Connection category under the General tab,Tools->Tool Properties

Enable .Run "Connect All" at Startup

If you enable Connect when "Connect All" but do not enable Run "Connect All" at Startup, you can instead use

the main menu choice to manually connect all connections marked this way.Database->Connect All

18.16 Executing SQL at Connect and Disconnect

Connection hooks defines optional SQL commands that are sent to the database at connect and just before

disconnect. They are typically used to initialize the database session with custom settings and to clean up

various resources at disconnect.

DbVisualizer 9.2 Users Guide

Page of 301 428

1.

2.

3.

You can enter the SQL you want to execute in the Properties tab for the connection, in the Connection Hooks

category.

18.17 Using a Single Shared Physical Connection

By default, DbVisualizer uses multiple physical connections to a database. Each SQL Commander tab is

allocated its own connection. Other processes that update the database, such as saving grid edits or importing

data to a table, also use their own connections. Finally most read-only operations, such as navigating the

database objects tree, use a separate shared connection. This is normally the most efficient way to access the

database, but in certain circumstances it is important to instead use one single shared physical connection for all

operations. Some examples are:

Only one session per account is allowed in the target database,

Locking issues when modifying the same table in the Data tab and in an SQL Commander (when a

pending transaction locks the whole table)

When using one-time passwords, new physical connections cannot be established without prompting for

a new password.

For situations like these, you can force DbVisualizer to use a single shared physical connection.

Selecting the Single Shared Physical Connection Mode (see page 301)

Data Manipulation with a Single Shared Physical Connection (see page 301)

Transaction Handling with a Single Shared Physical Connection (see page 302)

18.17.1 Selecting the Single Shared Physical Connection Mode

To use a single shared physical connection:

Open the Object View tab for the connection node,

Select the tab,Properties

Select the category and enable .Physical Connection Use a Single Shared Physical Connection

18.17.2 Data Manipulation with a Single Shared Physical

Connection

Executing a script in an SQL Commander tab, using an Action, editing a table in a grid and importing data to a

table are all operations that (potentially) modify data in the database. When a single shared physical connection

is used, only one such operation may be performed at a time. If you try to start an operation like this while

another one is already being processed, a dialog will pop up asking you to try again later.

DbVisualizer 9.2 Users Guide

Page of 302 428

18.17.3 Transaction Handling with a Single Shared Physical

Connection

If you have disabled with Single Shared Physical Connection enabled, commits or rollbacks doneAuto-Commit

in one part of the GUI affect changes done in any other part of the GUI. For instance, if you have executed

UPDATE or INSERT statements in an SQL Commander tab and then edit a table in its Data tab and commit

those changes, you are also committing the changes made by the UPDATE or INSERT statements. To make

this clear, all GUI controls for transaction handling for shared physical connections are shown in a separate

Single Physical Connections window.

This window pops up when you connect to a database with Single Shared Physical Connection enabled, or

when clicking any of the transaction control buttons in an SQL Commander tab for such a database. You can

also click the corresponding button in the DbVisualizer status bar to bring it up. From this window, you can

enable or disable Auto-Commit and manually commit or rollback a pending transaction.

You also get prompted to commit, rollback or continue working within the same transaction every time an

operation results in data changes. Before potentially making lots of changes, you get prompted to enable

Auto-Commit, since making lots of changes (e.g. importing lots of data) may fill up redo logs if running with

Auto-Commit disabled.

DbVisualizer 9.2 Users Guide

Page of 303 428

19 Finding Database Objects and Data
DbVisualizer provides ways to find all kinds of things, from parts of a script and data in a grid to objects in a

connection tree.

19.1 Finding and Replacing Text in the Editor

The main menu and the editor right-click menu contain two choices for finding text: and Edit Find Find with

.Dialog

Find displays a Quick Find field where you can type text to look for, and use the and keys (and Up Down F3

and , by default) to find the next or previous occurrence. Use the key to close the field.Shift-F3 Escape

Find with Dialog shows a dialog where you can enter what to look for, either as text or as a regular expression.

You can also limit the search to the current selection and use other options for a more precise search. You can

use Find Next and Find Previous to navigate to other matches, by default mapped to the and keys.F3 Shift-F3

Use the menu choice to show a dialog identical to but with an additional field for Replace Find with Dialog

entering then replacement text. When you use a regular expression with group expressions in the Find what

field, you can use back references to the captured text in the field. The back reference is written Replace with

as the dollar sign plus the group number. For instance, to replace all occurrences of the words and COL1 COL2

with the same word plus the character A (and) in a text, you specify the regular expression as a COL1A COL2A

group, i.e. , and use a back reference for the first group in the replacement text plus the (COL1|COL2)

additional character A, i.e. .$1A

19.2 Finding Data in a Grid

The right-click menu for a grid contains the and choices.Find Data Find Column

Find Data shows a Quick Find field where you can type text to look for, and use the and keys to find Up Down

the next or previous occurrence. Use the key to close the field.Escape

Find Column works the same, except it locates a column with the name you type.

19.3 Locating an Object in an SQL Statement

To open an tab for an object named in an SQL statement (e.g. a table in a SELECT statement) in Object View

the SQL Commander tab, place the caret in or next to the name and choose from the Show Object at Cursor

right-click menu.

DbVisualizer 9.2 Users Guide

Page of 304 428

19.4 Locating an Object in the Databases tab

With a node selected in the Databases tab, typing any character shows a Quick Find field where you can type

the name of an object you want to locate. Use the key to close the field.Escape

Note that only the visible, expanded, nodes are searched. To search among all nodes for a connection,

see .Searching a Connection (see page 304)

19.5 Searching a Connection

Only in DbVisualizer Pro

This feature is only available in the DbVisualizer Pro edition.

The tab in the tab for a connection is used to search among the objects in the tree by Search Object View

object name. The types of objects that are searchable depends on the database you are connected to. For

instance, columns are included in the tree for some databases but not for others.

DbVisualizer 9.2 Users Guide

Page of 305 428

Search by specifying the name of the object, or name pattern, and press the button. You can use Search

asterisk (*) as a wildcard in a pattern, or you can use a regular expression pattern if you enable it by checking

the checkbox. You can also specify where in the tree to start the search, and whether to Regular Expression

do a case sensitive search.

You can interrupt a search operation with the button in the grid toolbar. Use the toolbarStop Show Object Path

toggle button to include or exclude a column for the complete path for each found object in the grid. This path is

the same as if navigating to each object manually in the objects tree. Other grid toolbar buttons let you export

and print the search result grid.

Shift+Click on a row to switch to the Object View to see detailed information about a specific object. Shift+

 on a row to see detailed information about a specific object in a separate window.Double-click

Note that if you have tree filters or any other property that limits the content of the tree enabled, the

search is performed only for those objects that match the filters.

DbVisualizer 9.2 Users Guide

Page of 306 428

20 Exporting and Importing Settings
Sometimes it may be necessary to migrate all your settings for DbVisualizer and import them in second

DbVisualizer installation. This is very handy if you are migrating from one machine to another, or if you want to

setup an exact copy on your home computer, or if you would like to share you settings with other users. Another

key reason is for backup purposes. Loosing all database connection configurations can be really frustrating.

Export Settings (see page 306)

Import Settings (see page 308)

20.1 Export Settings

The Export Settings feature is available from the main window menu choice.File->Export Settings

DbVisualizer 9.2 Users Guide

Page of 307 428

The default settings ensures that all settings are exported, but you can selectively exclude certain items. Once

you've made the adjustments you want, press OK and the settings will be saved in the specified file. The

structure of this JAR file is the same as the content in your DbVisualizer preferences directory.

DbVisualizer 9.2 Users Guide

Page of 308 428

The option will transform all path definitions in the exported file to be relative to theRelative File Paths

DbVisualizer installation directory and your personal settings directory. This is useful if you will import

the settings on another machine or share it with other users. Note that the DbVisualizer version

importing relative file paths must be 7.1 or later to work properly (importing in earlier versions than 7.1

will not fail but path information will be erroneous for things such as drivers, favorites, etc.)

If is enabled for DbVisualizer and passwords are not excluded in the export Master Password (see page 290)

you must specify an export password. The export password is used to protect the passwords that are exported.

This export password is used later when importing the settings.

You should use your master password as the export password.not

20.2 Import Settings

The Import Settings dialog is launched from the main window menu choice.File->Import Settings

Import Settings is used to import settings as previously exported with Export Settings. Import examines the

content of the specified file and present the choices available.

DbVisualizer 9.2 Users Guide

Page of 309 428

Use the button to set where the imported database connections will appear in the objects tree.Target Location

Note how some of the databases and folders are pre-selected. DBVisualizer will automatically pre-select

databases and folders depending on the changes made since the export was done. E.g. the decorations show

how the database "CRM2" was deleted after the export was done.

If the imported data has been exported with an export password you will be prompted to enter it. You can

optionally click Cancel to clear the passwords for all the connections.

DbVisualizer 9.2 Users Guide

Page of 310 428

DbVisualizer 9.2 Users Guide

Page of 311 428

21 Command Line Interface
In addition to the DbVisualizer GUI tool, there is also a pure command line interface for running scripts. We

recommend that you use this interface for tasks that you schedule via the operating system's scheduling tool, or

when you need to include database tasks in a command script for a larger job. It is also the right tool for

execution of large scripts, such as a script generated by the DbVisualizer Export Schema feature.

Command Line Options (see page 311)

Examples (see page 312)

Executing single statements (see page 312)

Executing scripts (see page 314)

Controlling the output (see page 315)

Combining OS scripts, the command line interface and DbVisualizer variables (see page 316)

On Windows and Linux/Unix, you find this command as a BAT file () or a shell script () dbviscmd.bat dbviscmd.sh

in the DbVisualizer installation directory. For Mac OS X, the shell script is located in /Application/DbVisualizer-<

.Version>.app/Contents/Resources/app

21.1 Command Line Options

The command line interface supports the following options:

Usage: dbviscmd -connection <name> [-userid <userid>] [-password <password>]

 -sql <statements> | -sqlfile <filename> [-encoding <encoding>]

 [-catalog <catalog>] [-schema <schema>]

 [-maxrows <max>] [-maxchars <max>]

 [-stoponerror] [-stoponwarning]

 [-output all | none | log | result] [-outputfile <filename>]

 [-listconnections]

 [-debug [-debugfile <filename>]

 [-prefsdir <directory>] [-help] [-version]

 [-masterpw <password>]

Options:

 -connection <name> Database connection name (created with the GUI)

 -userid <userid> Userid to connect as

 -password <password> Password for userid

 -sql <statements> One or more delimited SQL statements

 -sqlfile <filename> SQL script file to execute

 -encoding <encoding> Encoding for the SQL script file

 -catalog <catalog> Catalog to use for unqualified identifiers

 -schema <schema> Schema to use for unqualified identifiers

 -maxrows <max> Maximum number of rows to display for a result set

 -maxchars <max> Maximum number of characters to display for a column

 -stoponerror Stop execution when getting an error

 -stoponwarning Stop execution when getting a warning

DbVisualizer 9.2 Users Guide

Page of 312 428

 -output "all" (default), output both log msgs and result sets

 "none", suppress both log messages and result sets

 "log", output only log messages

 "result", output only result sets

 -outputfile <filename> Script execution output file. Default is stdout

 -listconnections Lists all database connections

 -debug Write debug messages

 -debugfile <filename> File for debug messages. Default is stderr

 -prefsdir <directory> Use an alternate user preferences directory

 -masterpw <password> Master Password for encrypted database passwords

 -help Display this help

 -version Show version info

Before you can use the command line tool, you need to create at least one database connection using the GUI

tool. You need to specify the connection to use with the option when you run . If you -connection dbviscmd

have forgot the connection name, use the option to get a list of all connection names.-listconnections

21.2 Examples

21.2.1 Executing single statements

You can use the command line interface to execute a single SQL statement:

./dbviscmd.sh -connection "Oracle" -sql "select * from hr.countries"

select * from hr.countries;

INFO: 14:20:31 [SELECT - 25 row(s), 0.247 secs] Result set fetched

COUNTRY_ID COUNTRY_NAME REGION_ID

---------- ------------------------ ---------

AR Argentina 2

AU Australia 3

BE Belgium 1

BR Brazil 2

CA Canada 2

CH Switzerland 1

CN China 3

DE Germany 1

DK Denmark 1

EG Egypt 4

FR France 1

HK HongKong 3

IL Israel 4

IN India 3

IT Italy 1

JP Japan 3

KW Kuwait 4

MX Mexico 2

NG Nigeria 4

DbVisualizer 9.2 Users Guide

Page of 313 428

NL Netherlands 1

SG Singapore 3

UK United Kingdom 1

US United States of America 2

ZM Zambia 4

ZW Zimbabwe 4

SUMMARY: ... 1 statement(s) executed, 25 row(s) affected, exec/fetch time: 0.247/0.002 sec

 [1 successful, 0 warnings, 0 errors]

If you like to execute just a few statements, you can pass in a list of statements:

./dbviscmd.sh -connection "Oracle" -sql "select * from hr.countries; select * from hr.regions"

select * from hr.countries;

INFO: 14:23:39 [SELECT - 25 row(s), 0.012 secs] Result set fetched

COUNTRY_ID COUNTRY_NAME REGION_ID

---------- ------------------------ ---------

AR Argentina 2

AU Australia 3

BE Belgium 1

BR Brazil 2

CA Canada 2

CH Switzerland 1

CN China 3

DE Germany 1

DK Denmark 1

EG Egypt 4

FR France 1

HK HongKong 3

IL Israel 4

IN India 3

IT Italy 1

JP Japan 3

KW Kuwait 4

MX Mexico 2

NG Nigeria 4

NL Netherlands 1

SG Singapore 3

UK United Kingdom 1

US United States of America 2

ZM Zambia 4

ZW Zimbabwe 4

select * from hr.regions;

INFO: 14:23:39 [SELECT - 4 row(s), 0.130 secs] Result set fetched

REGION_ID REGION_NAME

--------- ----------------------

1 Europe

2 Americas

3 Asia

4 Middle East and Africa

SUMMARY: ... 2 statement(s) executed, 29 row(s) affected, exec/fetch time: 0.142/0.003 sec

 [2 successful, 0 warnings, 0 errors]

DbVisualizer 9.2 Users Guide

Page of 314 428

21.2.2 Executing scripts

If you frequently want to execute a number of statements, it's best to put them into a script file. Here's how to

execute a script that contains the two statements from the example above:

./dbviscmd.sh -connection "Oracle" -sqlfile "myscript.sql"

select * from hr.countries;

INFO: 16:38:06 [SELECT - 25 row(s), 0.021 secs] Result set fetched

COUNTRY_ID COUNTRY_NAME REGION_ID

---------- ------------------------ ---------

AR Argentina 2

AU Australia 3

BE Belgium 1

BR Brazil 2

CA Canada 2

CH Switzerland 1

CN China 3

DE Germany 1

DK Denmark 1

EG Egypt 4

FR France 1

HK HongKong 3

IL Israel 4

IN India 3

IT Italy 1

JP Japan 3

KW Kuwait 4

MX Mexico 2

NG Nigeria 4

NL Netherlands 1

SG Singapore 3

UK United Kingdom 1

US United States of America 2

ZM Zambia 4

ZW Zimbabwe 4

select * from hr.regions;

INFO: 16:38:06 [SELECT - 4 row(s), 0.005 secs] Result set fetched

REGION_ID REGION_NAME

--------- ----------------------

1 Europe

2 Americas

3 Asia

4 Middle East and Africa

SUMMARY: ... 2 statement(s) executed, 29 row(s) affected, exec/fetch time: 0.026/0.001 sec

 [2 successful, 0 warnings, 0 errors]

DbVisualizer 9.2 Users Guide

Page of 315 428

21.2.3 Controlling the output

You can use options to control how much output to generate. If you only want to see the results, use the -

 option with the result keyword:output

./dbviscmd.sh -connection "Oracle" -sqlfile "myscript.sql" -output result

COUNTRY_ID COUNTRY_NAME REGION_ID

---------- ------------------------ ---------

AR Argentina 2

AU Australia 3

BE Belgium 1

BR Brazil 2

CA Canada 2

CH Switzerland 1

CN China 3

DE Germany 1

DK Denmark 1

EG Egypt 4

FR France 1

HK HongKong 3

IL Israel 4

IN India 3

IT Italy 1

JP Japan 3

KW Kuwait 4

MX Mexico 2

NG Nigeria 4

NL Netherlands 1

SG Singapore 3

UK United Kingdom 1

US United States of America 2

ZM Zambia 4

ZW Zimbabwe 4

REGION_ID REGION_NAME

--------- ----------------------

1 Europe

2 Americas

3 Asia

4 Middle East and Africa

For other scripts, for instance a script containing INSERT statements, you may only want to see the log

messages:

./dbviscmd.sh -connection "Oracle" -sqlfile "myscript.sql" -output log

select * from hr.countries;

INFO: 16:52:56 [SELECT - 25 row(s), 0.013 secs] Result set fetched

select * from hr.regions;

DbVisualizer 9.2 Users Guide

Page of 316 428

INFO: 16:52:56 [SELECT - 4 row(s), 0.002 secs] Result set fetched

SUMMARY: ... 2 statement(s) executed, 29 row(s) affected, exec/fetch time: 0.015/0.002 sec

 [2 successful, 0 warnings, 0 errors]

21.2.4 Combining OS scripts, the command line interface and

DbVisualizer variables

For more complex tasks, you can call the command line interface from a shell script, for instance a Bourne shell

script on Unix or a BAT file on Windows. You can also use DbVisualizer variables to pass information between

the shell script and the SQL script. In this example, we have a simple SQL script () that contains a cmdtest.sql

SELECT statement with a variable in place for the table name:

cmdtest.sql

select * from ${table}$

A text file () contains the table names we want to execute the SQL script with:tables.txt

tables.txt

hr.countries

hr.regions

In a command shell (Bourne or Bash), we can then execute the script using the table names from the text file:

for name in `cat tables.txt`;

 do ./dbviscmd.sh -connection "Oracle" -sql "@run cmdtest.sql \${table||$name||||nobind}\$; ";

done

@run /Users/hans/tmp/cmdtest.sql ${table||hr.countries||||nobind}$;

INFO: 17:08:16 [@RUN - 0 row(s), 0.000 secs] Command processed

select * from hr.countries;

INFO: 17:08:16 [SELECT - 25 row(s), 0.012 secs] Result set fetched

COUNTRY_ID COUNTRY_NAME REGION_ID

---------- ------------------------ ---------

AR Argentina 2

AU Australia 3

BE Belgium 1

BR Brazil 2

CA Canada 2

CH Switzerland 1

CN China 3

DE Germany 1

DK Denmark 1

EG Egypt 4

FR France 1

HK HongKong 3

DbVisualizer 9.2 Users Guide

Page of 317 428

IL Israel 4

IN India 3

IT Italy 1

JP Japan 3

KW Kuwait 4

MX Mexico 2

NG Nigeria 4

NL Netherlands 1

SG Singapore 3

UK United Kingdom 1

US United States of America 2

ZM Zambia 4

ZW Zimbabwe 4

SUMMARY: ... 2 statement(s) executed, 25 row(s) affected, exec/fetch time: 0.012/0.002 sec

 [2 successful, 0 warnings, 0 errors]

@run /Users/hans/tmp/cmdtest.sql ${table||hr.regions||||nobind}$;

INFO: 17:08:18 [@RUN - 0 row(s), 0.000 secs] Command processed

select * from hr.regions;

INFO: 17:08:18 [SELECT - 4 row(s), 0.013 secs] Result set fetched

REGION_ID REGION_NAME

--------- ----------------------

1 Europe

2 Americas

3 Asia

4 Middle East and Africa

SUMMARY: ... 2 statement(s) executed, 4 row(s) affected, exec/fetch time: 0.013/0.000 sec

 [2 successful, 0 warnings, 0 errors]

The command line interface is called with the option, specifying the -sql client-side command @run (see page

. A is passed to the command with the value taken from the 179) DbVisualizer variable (see page 221) @run

shell variable. This DbVisualizer variable value is then available to the script executed by the command.@run

Note that you may need to escape certain characters that the shell would otherwise interpret, like the dollar

signs that are part of the DbVisualizer variable delimiters.

DbVisualizer 9.2 Users Guide

Page of 318 428

22 Database Profiles

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

A Database Profile is the foundation for database specific support in DbVisualizer. Technically the database

profile is a single XML file specifying what object types, actions and viewers/editors should be available in the

DbVisualizer user interface for a specific database.

22.1 Understanding Database Profiles

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

A database profile is, somewhat simplified, a definition of the kind of information that is presented in the

database objects tree and in the various object views for a specific database engine. In addition, the profile

defines the actions for the object types defined in the profile. DbVisualizer loads the matching database profile

when you connect to a database. If no matching profile is found, or if you are running DbVisualizer Free,

DbVisualizer uses a profile with just the general database information and actions included.Generic

DbVisualizer Pro currently offer database specific support (database profiles) for the following databases (click

links for details):

DB2 LUW (http://www.dbvis.com/doc/db2-luw-database-support/)

H2 (http://www.dbvis.com/doc/h2-database-support/)

Informix (http://www.dbvis.com/doc/informix-database-support/)

JavaDB/Derby (http://www.dbvis.com/doc/javadb-derby-database-support/)

Mimer SQL (http://www.dbvis.com/doc/mimer-database-features/)

MySQL (http://www.dbvis.com/doc/mysql-database-support/)

NuoDB (http://www.dbvis.com/doc/nuodb-database-support/)

Oracle (http://www.dbvis.com/doc/oracle-database-support/)

PostgreSQL (http://www.dbvis.com/doc/postgresql-database-support/)

SQL Server (http://www.dbvis.com/doc/sqlserver-database-features/)

SQLite (http://www.dbvis.com/doc/sqlite-database-support/)

http://www.dbvis.com/doc/db2-luw-database-support/
http://www.dbvis.com/doc/h2-database-support/
http://www.dbvis.com/doc/informix-database-support/
http://www.dbvis.com/doc/javadb-derby-database-support/
http://www.dbvis.com/doc/mimer-database-features/
http://www.dbvis.com/doc/mysql-database-support/
http://www.dbvis.com/doc/nuodb-database-support/
http://www.dbvis.com/doc/oracle-database-support/
http://www.dbvis.com/doc/postgresql-database-support/
http://www.dbvis.com/doc/sqlserver-database-features/
http://www.dbvis.com/doc/sqlite-database-support/

DbVisualizer 9.2 Users Guide

Page of 319 428

Sybase ASE (http://www.dbvis.com/doc/sybase-ase-database-support/)

Vertica (http://www.dbvis.com/doc/vertica-database-support/)

The specialized database profiles define different object types, so the database objects tree may look different

depending on which database you are connected to. The structure and organization of a database profile is also

something that may impact the layout of the tree, even though the provided ones are similar in their structure.

There are two root nodes in the majority of the provided profiles:

Schema Objects

DBA objects

Schema objects are, for example, , , , and , while DBA objects most often are tables views triggers functions

objects that require administration privileges in the database in order to access them. The convention in

DbVisualizer is to put all DBA objects under the tree node. If you connect to a database using an DBA Views

account with insufficient privileges to access a DBA object, you may see error messages if you try to select

nodes under the DBA Views node. The following is an example of the DBA sub tree for Oracle:

For databases that have no specific profile, DbVisualizer uses the profile. DbVisualizer supports a wideGeneric

range of databases. The nature of the databases and what they support differ from vendor to vendor, so the

appearance and structure of the tree below the database connection objects for different databases differ as

well. The generic database profile (the only profile available in DbVisualizer Free) displays objects based on

what JDBC offers in terms of database information (aka metadata information). DbVisualizer asks the JDBC

driver for all schemas, databases, tables and procedures, and then builds the tree based on what the driver

returns.

The advantage of using JDBC to get database metadata is that it is a standard way to access the information,

independent of the database engine type; the JDBC driver layer hides the proprietary details about where and

how the information is really stored. The drawback with using JDBC is that JDBC doesn't offer access to all

metadata a database may hold. While the information presented by the generic profile, with its reliance on JDBC

, is sufficient for many tasks, a database specific profile offers far more details as well as more features. If you

use DbVisualizer Free with one of the databases supported by database specific profiles, you may want to

upgrade to the DbVisualizer Pro edition.

The generic database profile when used for an Oracle connection look as follows:

http://www.dbvis.com/doc/sybase-ase-database-support/
http://www.dbvis.com/doc/vertica-database-support/

DbVisualizer 9.2 Users Guide

Page of 320 428

The appearance of the generic database profile may include schema objects and/or catalog objects depending

on whether the database supports these objects. The Procedures object always appear in the tree, regardless of

if the database connection supports procedures or not. There is no DBA Views node in the generic profile.

22.1.1 Affected DbVisualizer features

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

One of the most important and central features in DbVisualizer is the , used to navigate database objects tree

databases, and the , showing details about specific objects. The general problem exploring any object view

database is that they are all different with respect to the information describing what's in the database (also

called system tables or database meta data). This basically means that it's rather complex to implement a

multi-database support product, such as DbVisualizer, since each database must be handled specifically. All

databases also support different object types, apart from the most common ones, such as table, view, index, etc

.

The database profile framework is used to simplify the process of defining what information DbVisualizer will

display and operate on for a specific database. Technically, a database profile is an file with all of the logic,XML

structure and actions mapped to the visual components in DbVisualizer. Another great benefit of separating the

database specific logic from the implementation of DbVisualizer is that anyone with some degree of domain

knowledge can create a database profile. All that is needed is a text editor (preferably with XML support) and

some ideas of what should be the final result.

A great source for inspiration (except for related sections in the users guide) is all the existing database profiles

that comes with DbVisualizer. All database profiles that comes with DbVisualizer are stored in the DBVIS-HOME

 directory (exact path is OS dependent)./resources/profiles

The following figure illustrates which features in DbVisualizer are controlled by the database profile.

DbVisualizer 9.2 Users Guide

Page of 321 428

The at the left shows the . This tree is used to navigate the objects in the red box database objects tree

database. Selecting an object in the tree shows the () for the selected object type. An object view blue box

object view may have several (), showing object information. DbVisualizer shows these as data views green

labeled tabs. The green box in the screenshot shows the content of the data view labeled Columns. The type of

viewer that is presenting the data in the screenshot is the grid viewer. Read more about all data viewers in the

 section.Viewers (see page 355)

Common to both the database objects tree and the object view are the SQL that are used to fetch commands

the information from the database. The associated SQL is executed by DbVisualizer whenever a node in the

tree is expanded (to expose any child objects) or when a node is selected (to fill the object data views).

DbVisualizer 9.2 Users Guide

Page of 322 428

1.

2.

Right-clicking the mouse on an object in the tree or clicking the button in the object view shows a menu Actions

with all valid for the selected object. These are also defined per database profile and object type. Read actions

more about the capabilities of actions in the definition of section.user actions (see page 371)

The mapping from the visual components in the user interface described earlier and the element definitions in

the XML file is, briefly, as follows:

The database objects tree (green box) is described by the root element,ObjectsTreeDef (see page 345)

The object views (green and blue boxes) are described by the root ObjectsViewDef (see page 355)

element,

The commands used to execute the SQL to get the information for ObjectsTreeDef, ObjectsViewDef and

ObjectsActionDef definitions are defined by the root element,Commands (see page 339)

All Actions for an object are defined by the root element.ObjectsActionDef (see page 371)

22.1.2 How a Database Profile is loaded

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

DbVisualizer automatically detect what database profile to use based on the setting for a Database Type

database connection. A database profile can also be manually specified in the connection properties.

A database profile is located using the search paths defined in tab and the Connection Properties Database

 category. The standard directories in the search path are:Profile

PREFSDIR\ext\profile

DBVIS-HOME\resources\profiles

PREFSDIR is the directory located in the users home directory and it keeps all user settings for .dbvis

DbVisualizer. The list of paths may be reorganized and directories can be added. Profile files are searched in

the specified order.

If the actual database profile is found in the search path it is loaded and any parent profile(s) it extends are also

loaded and finally merged.

If there is no matching profile or if using the edition then the profile is automatically DbVisualizer Free generic

used. This is very basic profile and shows only rudimentary information about the objects in the database and

should support most databases with a JDBC driver.

A database profile other than the generic is built for a specific database. Manually selecting for example a

database profile for Oracle while connecting to DB2 will result in all sorts of errors.

DbVisualizer 9.2 Users Guide

Page of 323 428

22.2 Creating a Database Profile

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

At a first glance creating and developing a database profile in XML may seem difficult. However, all definitions

forming the functionality for a specific database are expressed in a single file and the XML elements are well

formed. The general recommendation is to use one of the existing database profiles as base (copy/paste) and

then step-by-step modify it for the actual database. You may use an external text editor (preferably with XML

support) or the SQL editor in DbVisualizer to edit the file. Once new changes has been made, save the file,

reconnect the database connection in DbVisualizer to test the layout and functionality changes.

Creating a new database profile should only be made for databases with no database profile available. If you

are looking into changing one of the existing database profiles by adding or modifying existing functionality, it

should be extended.

For information where custom database profiles should be saved check the How a Database Profile is

 is section.loaded (see page 322)

For more information how to or check create a new database profile extending an existing database profile

the section.Extending a Database Profile (see page 323)

22.3 Extending a Database Profile

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

Extending Commands (see page 324)

Extending Database Objects Tree (see page 325)

Extending Actions (see page 329)

Extending Object Views (see page 330)

Remove an Element (see page 331)

DbVisualizer 9.2 Users Guide

Page of 324 428

Complete sample Database Profile (see page 331)

All database profiles must extend the database profile. The generic profile handles the very basic objectgeneric

types in a relational database such as , , and . Its implementation is basedTables Columns Indexes Procedures

entirely on what the driver provide in terms of database meta data. Due to the tight connection between JDBC

the generic profile and the JDBC driver, the generic profile can be used to access almost any database with a

JDBC driver.

The selection on what database profile should be used is determined with the setting for the Database Type

database connection. Some of the database types that can be picked have a dedicated database profile with

extended support while others have not. For databases with no database profile available, the generic one is

used. It is also possible to manually chose the generic profile in the Connection Properties / Database

 settings.Profiles

The most important area in the database profile as seen from the DbVisualizer user interface is the section

describing the . This is the browser or navigator showing database objects. This is also database objects tree

the place that connects used to operate on database objects and (not database views) used to actions views

display detailed information.

This section of the users guide is mainly focused on extending an existing database profile (not the generic

profile) rather than creating a completely new profile (which should extend the generic database profile).

Extending a database profile is not only about adding functionality to an existing profile but also the

process of changing and removing existing definitions in any of the profiles that are extended.

22.3.1 Extending Commands

Extending the and elements is simple as every command should be uniquely Commands InitCommands

identified. To add a just insert the new command.Command

 <Commands extends="true">

 <Command id="sample.getLoginSchema">

 <SQL>

 <![CDATA[

select '${schema}' as schema from dual

]]>

 </SQL>

 </Command>

 </Commands>

To override the definition of an existing command in the parent profile, just make sure the of the new id

command match the id of the parent profile command. It will then be replaced.

DbVisualizer 9.2 Users Guide

Page of 325 428

22.3.2 Extending Database Objects Tree

Extending or modifying the database objects tree (ObjectsTreeDef) require some attention since the

modifications must match the exact object paths as defined in the parent profile. The object path is determined

by the and structure in the ObjectsTreeDef with the addition of the attribute. The GroupNode DataNode type

following is an example of the object path to the sub node for a node:Columns Table

GroupNode[@type='Schemas']/DataNode[@type='Schema']/GroupNode[@type='Tables']/DataNode[@type='Table

']/GroupNode[@type='Columns']

(The utility will report object paths in the above analyze database profile (see page 398) xpath (http://

 format).www.w3schools.com/xpath/)

The hierarchy of GroupNode and DataNode is important when extending the database objects tree

since the exact same hierarchy must be implemented in the extended profile. This also involve any

conditional elements such as If/Else/ElseIf that are used in the parent profile.

Consider the following example showing the objects tree (for Oracle) with the node being expanded toSchemas

show all schemas in the database:

http://www.w3schools.com/xpath/
http://www.w3schools.com/xpath/
http://www.w3schools.com/xpath/

DbVisualizer 9.2 Users Guide

Page of 326 428

Instead of showing all schema objects in the database we want to adjust so that only the default schema is

displayed at the top level (below the Oracle database connection node). The default schema node should in

addition only show objects rather than all 20 (or so) object types being displayed in the standard Oracle table

database profile.

The previous screenshot shows the new node at the top while the node has been My Schema: HR Schemas

renamed . To accomplish the above a custom database profile has been created in the All Schemas ${

 file with the following content required for dbvis.prefsdir}/ext/profiles/sample-ext-oracle.xml

the definition:ObjectsTreeDef

 <!--Commands used in this profile-->

 <Commands extends="true">

 <Command id="sample.getLoginSchema">

 <SQL>

 <![CDATA[

select '${schema}' as schema from dual

]]>

 </SQL>

 </Command>

 </Commands>

 <ObjectsTreeDef extends="true">

 <!--The following "Schema" definition shows the login schema directly below-->

 <!--the Database Connection for fast access. It is limited to only show-->

 <!--tables (by setting the "Table" DataNode to isLeaf="true")-->

 <DataNode type="Schema" label="My Schema: ${sample.getLoginSchema.SCHEMA}"

 icon="MySchema" order-before="0">

 <SetVar name="schema" value="${sample.getLoginSchema.SCHEMA}"/>

 <Command idref="sample.getLoginSchema">

 <Input name="schema" value="${#db.loginSchema}"/>

 </Command>

DbVisualizer 9.2 Users Guide

Page of 327 428

 <DataNode type="Table" label="${getTables.TABLE_NAME}"

 sort="getTables.TABLE_NAME" isLeaf="true">

 <SetVar name="objectname" value="${getTables.TABLE_NAME}"/>

 <SetVar name="rowcount" value="true"/>

 <SetVar name="acceptInQB" value="true"/>

 <Command idref="oracle.getTables">

 <Input name="owner" value="${schema}"/>

 <Output id="getTables.TABLE_SCHEM" index="1"/>

 <Output id="getTables.TABLE_NAME" index="2"/>

 <Filter type="Table" name="Table">

 <Column index="TABLE_NAME" name="Name"/>

 </Filter>

 </Command>

 <!--These are needed for the viewers defined in the parent profile-->

 <!--associated with the "Table" type-->

 <SetVar name="theTableName" value="${objectname}"/>

 <SetVar name="theParentName" value="${objectname}"/>

 <SetVar name="triggersCondition"

 value="and table_name = '${theTableName}'"/>

 </DataNode>

 </DataNode>

 <!--Renaming the standard Schemas node to "All Schemas"-->

 <GroupNode type="Schemas" label="All Schemas"/>

 </ObjectsTreeDef>

In the section there is a new that run a dummy SQL SELECT only to create a result set Commands Command

containing a single row/column with the value of the variable. The value for the variable ${schema} ${schema}

is provided in the Command element for using the variable DataNode type="Schema" ${#db.loginSchema}

value as input. This variable is maintained by DbVisualizer and contain the login schema as specified in the

connection setup. For Oracle this is the .userid

 <Command idref="sample.getLoginSchema">

 <Input name="schema" value="${#db.loginSchema}"/>

 </Command>

The command above is used to present the default schema as in the following declaration.DataNode

 <DataNode type="Schema" label="My Schema: ${sample.getLoginSchema.SCHEMA}"

 icon="MySchema" order-before="0">

 <SetVar name="schema" value="${sample.getLoginSchema.SCHEMA}"/>

 <Command idref="sample.getLoginSchema">

 <Input name="schema" value="${#db.loginSchema}"/>

 </Command>

 <DataNode type="Table">

 ...

 </DataNode>

 </DataNode>

DbVisualizer 9.2 Users Guide

Page of 328 428

The label for this Schema type is . The label="My Schema: ${sample.getLoginSchema.SCHEMA}" ${

 variable name consists of two parts, the name of the command: . }sample.getLoginSchema SCHEMA

and the column name: in the result set the produced by the command. sample.getLoginSchema SCHEMA

As a sub node to the node there is the definition for the Table object type.My Schema DataNode type="Table"

The complete declaration for the Table element and its sub elements has been copied from the parent profile:

 <DataNode type="Table" label="${getTables.TABLE_NAME}"

 sort="getTables.TABLE_NAME" isLeaf="true">

 <SetVar name="objectname" value="${getTables.TABLE_NAME}"/>

 <SetVar name="rowcount" value="true"/>

 <SetVar name="acceptInQB" value="true"/>

 <Command idref="oracle.getTables">

 <Input name="owner" value="${schema}"/>

 <Output id="getTables.TABLE_SCHEM" index="1"/>

 <Output id="getTables.TABLE_NAME" index="2"/>

 <Filter type="Table" name="Table">

 <Column index="TABLE_NAME" name="Name"/>

 </Filter>

 </Command>

 <!--These are needed for the viewers defined in the parent profile-->

 <!--associated with the "Table" type-->

 <SetVar name="theTableName" value="${objectname}"/>

 <SetVar name="theParentName" value="${objectname}"/>

 <SetVar name="triggersCondition"

 value="and table_name = '${theTableName}'"/>

 </DataNode>

The Table objects in the extended profile should not show any sub nodes such as columns or triggers and these

declarations are then removed in the copied DataNode for the Table object. The attribute isLeaf="true"

specifies that there will be no child nodes.

The new node in the extended profile is supposed to have the exact same content and definition All Schemas

as in the parent profile when it was called . The following definition will just rename the label of the Schemas

existing node.

 <GroupNode type="Schemas" label="All Schemas"/>

This example show adding a new node under all objects.Role DBA / Users / User

In the parent Oracle profile there are no child nodes below . To handle this all nodes from down to User DBA

 must be specified (aka the object type path). The only requirement is that the type attribute is specified andUser

that it match the type in the parent profile. In addition, this example specify the attribute for some of the label

nodes just to show that will replace any parent equvivalent node attributes.overridden attributes

DbVisualizer 9.2 Users Guide

Page of 329 428

Only attributes for and can be overridden. If you need to override for example GroupNode DataNode

a SetVar in a DataNode then all of the attributes in the DataNode and all its sub elements must be

specified.

 <GroupNode type="DBA" label="Database Administration">

 <GroupNode type="Users">

 <!--The "User" type don't allow child nodes in the parent profile.-->

 <!--Setting isLeaf="false" is needed to override this and allow the-->

 <!--new "Role" child node-->

 <DataNode type="User" isLeaf="false">

 <!--Here comes the new child "Role" DataNode-->

 <DataNode type="Role" isLeaf="true"

 label="${oracle.getGranteeRoles.GRANTED_ROLE} - ext">

 <SetVar name="objectname"

 value="${oracle.getGranteeRoles.GRANTED_ROLE}"/>

 <Command idref="oracle.getGranteeRoles">

 <Input name="grantee" value="${objectname}"/>

 </Command>

 </DataNode>

 </DataNode>

 </GroupNode>

 </GroupNode>

The following are specified only to redefine the position of the and nodes. One of Locks Sessions order-before

and attributes are used to either identify a type for which the node should be positioned before or order-after

after, or an index. The index is the fixed position or 0 which means first or a somewhat high number means last.

The following will move the first among the child nodes.Sessions DBA

 <GroupNode type="Sessions" order-before="0"/>

 <!--The following will move the "Locks" node before "Sessions"-->

 <GroupNode type="Locks" order-before="Sessions"/>

22.3.3 Extending Actions

Extending ActionGroup and Action elements follow the same rules as for extending ObjectsTreeDef (see page

 section. The following example show removing the action for the 325) oracle-schema-stringsearch Schema

object type in the parent profile. A new : is added with a single new ActionGroup Extended Schema Actions

: .Action sample-schema-sample-action

 <ObjectsActionDef extends="true">

 <ActionGroup type="Schema">

 <!--Remove action from parent profile for "Schema"-->

 <Action id="oracle-schema-stringsearch" action="drop"/>

 <!--Adds an "Extended Schema Actions" sub menu in the "Schema" actions menu-->

DbVisualizer 9.2 Users Guide

Page of 330 428

 <ActionGroup type="sample-schema-test" label="Extended Schema Actions">

 <!--Sample action that does nothing-->

 <Action id="sample-schema-sample-action" label="Sample Action"

 reload="true" resetcatalogs="true" icon="remove">

 <Input label="Text Field" name="textField" style="text" editable="true"/>

 <Command>

 <SQL><![CDATA[Sample Action "${textField}"]]></SQL>

 </Command>

 <Confirm>

 Really run Sample Action "${textField}"?

 </Confirm>

 <Result>

 Sample Action "${textField}" processed!

 </Result>

 </Action>

 </ActionGroup>

 </ActionGroup>

 </ObjectsActionDef

22.3.4 Extending Object Views

Extending and elements follow the same rules as for extending ActionGroup Action ObjectsTreeDef (see page

 section.325)

 <ObjectsViewDef extends="true">

 <!--Schema is dropped in the Oracle profile. Redefine it here and show the-->

 <!--dictionary views. That data is really not associated with the single schema-->

 <!--defined in this profile but is a way to have it quickly accessed from-->

 <!--a single node.-->

 <ObjectView type="Schema">

 <DataView id="sample-schema-dict" label="Dictionary"

 icon="sample-schema-dict" viewer="grid">

 <Command idref="sample.getDict"/>

 <Message>

 <![CDATA[

<html>

Simple viewer showing all dictionary tables with description. Easily accessed

by opening the Schema viewer since that is empty anyway in the

parent oracle profile.

</html>

]]>

 </Message>

 </DataView>

 </ObjectView>

 </ObjectsViewDef>

DbVisualizer 9.2 Users Guide

Page of 331 428

22.3.5 Remove an Element

Removing an object in the parent profile is easy, just add the attribute to any of , action="drop" GroupNode

, , , and elements. If there are any sub elements for the DataNode ObjectView DataView ActionGroup Action

object being dropped these are also removed.

22.3.6 Complete sample Database Profile

This document describe the different parts of a extended sample database profile for an Oracle database. Here

follow the complete sample database profile.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE DatabaseProfile SYSTEM "dbvis-defs.dtd">

<DatabaseProfile desc="Sample profile extending the Oracle profile"

 extends="oracle">

 <!--Commands used in this profile-->

 <Commands extends="true">

 <Command id="sample.getLoginSchema">

 <SQL>

 <![CDATA[

select '${schema}' as schema from dual

]]>

 </SQL>

 </Command>

 <Command id="sample.getDict">

 <SQL>

 <![CDATA[

select * from dict order by table_name

]]>

 </SQL>

 </Command>

 </Commands>

 <ObjectsActionDef extends="true">

 <ActionGroup type="Schema">

 <!--Remove action from parent profile for "Schema"-->

 <Action id="oracle-schema-stringsearch" action="drop"/>

 <!--Adds an "Extended Schema Actions" sub menu in the "Schema" actions menu-->

 <ActionGroup type="sample-schema-test" label="Extended Schema Actions">

 <!--Sample action that does nothing-->

 <Action id="sample-schema-sample-action" label="Sample Action"

 reload="true" resetcatalogs="true" icon="remove">

 <Input label="Text Field" name="textField" style="text" editable="true"/>

 <Command>

 <SQL><![CDATA[Sample Action "${textField}"]]></SQL>

 </Command>

 <Confirm>

 Really run Sample Action "${textField}"?

DbVisualizer 9.2 Users Guide

Page of 332 428

 </Confirm>

 <Result>

 Sample Action "${textField}" processed!

 </Result>

 </Action>

 </ActionGroup>

 </ActionGroup>

 </ObjectsActionDef>

 <ObjectsTreeDef extends="true">

 <!--The following "Schema" definition shows the login schema directly below-->

 <!--the Database Connection for fast access. It is limited to only show-->

 <!--tables (by setting the "Table" DataNode to isLeaf="true")-->

 <DataNode type="Schema" label="My Schema: ${sample.getLoginSchema.SCHEMA}"

 icon="MySchema" order-before="0">

 <SetVar name="schema" value="${sample.getLoginSchema.SCHEMA}"/>

 <Command idref="sample.getLoginSchema">

 <Input name="schema" value="${#db.loginSchema}"/>

 </Command>

 <DataNode type="Table" label="${getTables.TABLE_NAME}"

 sort="getTables.TABLE_NAME" isLeaf="true">

 <SetVar name="objectname" value="${getTables.TABLE_NAME}"/>

 <SetVar name="rowcount" value="true"/>

 <SetVar name="acceptInQB" value="true"/>

 <Command idref="oracle.getTables">

 <Input name="owner" value="${schema}"/>

 <Output id="getTables.TABLE_SCHEM" index="1"/>

 <Output id="getTables.TABLE_NAME" index="2"/>

 <Filter type="Table" name="Table">

 <Column index="TABLE_NAME" name="Name"/>

 </Filter>

 </Command>

 <!--These are needed for the viewers defined in the parent profile-->

 <!--associated with the "Table" type-->

 <SetVar name="theTableName" value="${objectname}"/>

 <SetVar name="theParentName" value="${objectname}"/>

 <SetVar name="triggersCondition"

 value="and table_name = '${theTableName}'"/>

 </DataNode>

 </DataNode>

 <!--Renaming the standard Schemas node to "All Schemas"-->

 <GroupNode type="Schemas" label="All Schemas"/>

 <!--The main purpose with the following is to add a "Role" child DataNode -->

 <!--for each "User". In the parent Oracle profile there are no child-->

 <!--nodes below "User". To handle this all nodes from "DBA" down to "User"-->

 <!--must be specified (aka the object type path). The only requirement is that-->

 <!--the type attribute is specified and that it match the type in the parent profile.-->

 <!--In addition, this example specify the label attribute for some of the-->

 <!--nodes just to show that overridden attributes will replace any parent-->

 <!--equvivalent node attributes.-->

 <GroupNode type="DBA" label="Database Administration">

 <GroupNode type="Users">

 <!--The "User" type don't allow child nodes in the parent profile.-->

 <!--Setting isLeaf="false" is needed to override this and allow the-->

DbVisualizer 9.2 Users Guide

Page of 333 428

 <!--new "Role" child node-->

 <DataNode type="User" isLeaf="false">

 <!--Here comes the new child "Role" DataNode-->

 <DataNode type="Role" isLeaf="true"

 label="${oracle.getGranteeRoles.GRANTED_ROLE} - ext">

 <SetVar name="objectname"

 value="${oracle.getGranteeRoles.GRANTED_ROLE}"/>

 <Command idref="oracle.getGranteeRoles">

 <Input name="grantee" value="${objectname}"/>

 </Command>

 </DataNode>

 </DataNode>

 </GroupNode>

 <!--The following are specified only to re-define the position of the-->

 <!--"Locks" and "Sessions" nodes. One of "order-before" and "order-after" -->

 <!--attributes are used to either identify a type for which the node should-->

 <!--be positioned before or after, or an index. The index is the fixed-->

 <!--position or 0 which means first or a somewhat high number means last.-->

 <!--The following will move the "Sessions" first among the "DBA"-->

 <!--child nodes-->

 <GroupNode type="Sessions" order-before="0"/>

 <!--The following will move the "Locks" node before "Sessions"-->

 <GroupNode type="Locks" order-before="Sessions"/>

 </GroupNode>

 </ObjectsTreeDef>

 <ObjectsViewDef extends="true">

 <!--Schema is dropped in the Oracle profile. Redefine it here and show the-->

 <!--dictionary views. That data is really not associated with the single schema-->

 <!--defined in this profile but is a way to have it quickly accessed from-->

 <!--a single node.-->

 <ObjectView type="Schema">

 <DataView id="sample-schema-dict" label="Dictionary"

 icon="sample-schema-dict" viewer="grid">

 <Command idref="sample.getDict"/>

 <Message>

 <![CDATA[

<html>

Simple viewer showing all dictionary tables with description. Easily accessed

by opening the Schema viewer since that is empty anyway in the

parent oracle profile.

</html>

]]>

 </Message>

 </DataView>

 </ObjectView>

 </ObjectsViewDef>

</DatabaseProfile>

22.4 Top level XML Elements

DbVisualizer 9.2 Users Guide

Page of 334 428

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

The top level XML elements in a database profile is as follows:

InitCommands (see page 336) (optional)

Defines SQLs that are executed before the profile is being loaded,

Commands (see page 339)

Defines the SQLs for the ObjectsTreeDef, ObjectsViewDef and ObjectsActionDef,

ObjectsActionDef (see page 371) (optional)

Defines actions for object types,

ObjectsTreeDef (see page 345)

Defines the structure and what objects should be visible in the objects tree,

ObjectsViewDef (see page 355)

Defines the object views for a specific object type.

All database connections loads a database profile from an XML file and if there is no matching database profile,

the profile is used. This profile use standard JDBC metadata requests to obtain information about the (generic

some) objects in the database. The generic profile is located in DBVIS-HOME\resources\profiles\

.generic.xml

22.4.1 XML template

The following show an overview of a database profile with the top level XML elements.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE DatabaseProfile SYSTEM "dbvis-defs.dtd">

<DatabaseProfile desc="Profile for Sybase ASE"

 version="$Revision: 16166 $"

 date="$Date: 2013-03-05 17:25:05 +0100 (Tue, 05 Mar 2013) $"

 minver="9.1"

 extends="generic">

 <InitCommands extends="true">

 ...

 </InitCommands>

 <Commands extends="true">

 ...

 </Commands>

 <ObjectsActionDef extends="true">

 ...

 </ObjectsActionDef>

 <ObjectsTreeDef extends="false">

 ...

DbVisualizer 9.2 Users Guide

Page of 335 428

 </ObjectsTreeDef>

 <ObjectsViewDef extends="true">

 ...

 </ObjectsViewDef>

</DatabaseProfile>

The DOCTYPE identifier at row 2 defines the DTD that is used to validate the XML.

The root element for the database profile framework is the element setting DatabaseProfile (see page 335)

various attributes. Continue to the next sections for information about XML elements forming a database profile.

22.4.2 XML element - DatabaseProfile

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

The DatabaseProfile is the root element in the XML file. It is required and have the following attributes:

<DatabaseProfile desc="Profile for Sybase ASE"

 version="$Revision: 16166 $"

 date="$Date: 2013-03-05 17:25:05 +0100 (Tue, 05 Mar 2013) $"

 minver="9.1"

 extends="generic">

 ...

</DatabaseProfile>

Attribute Description

desc The description of the profile

version The version of the profile

date The timestamp when the profile was last modified

minver The minimum version of DbVisualizer that is required for the profile to work

extends The parent profile that is extended. In most situations at least should be specifiedgeneric

Most attributes except are informative and are displayed in the list when selecting extends Database Profile

the connection properties for a database connection:

DbVisualizer 9.2 Users Guide

Page of 336 428

22.4.3 XML element - InitCommands

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

The element define initialization that are executed just before the InitCommands commands (see page 339)

rest of the database profile is loaded. These commands are typically used to determine characteristics of the

DbVisualizer 9.2 Users Guide

Page of 337 428

1.

target database and database session. The result of these commands are stored in that can be used variables

in that are evaluated when the rest of the profile is loaded. A common use case is to conditions (see page 395)

find out the authorization level of the current user as defined in the database. If the user have limited privileges

then some object types, views and actions should be disabled.

Multiple commands may be defined in the InitCommands element and these are executed in order.

The following sample is from the HP Neoview database profile. The main purpose with its commands is to first

determine the database version by quering a system table. Based on the database version a condition controls

which of two queries will be executed to find out another property from the database. The result of the executed

query is stored in a the variable.METACAT

<InitCommands extends="true">

 <Command id="neoview.getDbVersion" method="runBeforeConditionsEval">

 <SQL>

 <![CDATA[

SELECT SUBSTRING(SYSTEM_VERSION FROM 10)

FROM (GET VERSION OF SYSTEM) V(SYSTEM_VERSION)

]]>

 </SQL>

 <Output id="DBVERSION" index="1"/>

 </Command>

 <Command id="neoview.getMaster">

 <If test="#DBVERSION gte 2400">

 <SQL>

 <![CDATA[

SELECT MIN(SYSTEM_CATALOGS) AS MASTER_CAT

FROM (GET SYSTEM CATALOGS) V(SYSTEM_CATALOGS)

WHERE SYSTEM_CATALOGS LIKE _ISO88591'NONSTOP_SQLMX_%'

]]>

 </SQL>

 </If>

 <Else>

 <SQL>

 <![CDATA[

SELECT 'NONSTOP_SQLMX_${#dp.METACAT}'

FROM (VALUES(1)) AS T1

]]>

 </SQL>

 </Else>

 <Output id="METACAT" index="1"/>

 </Command>

</InitCommands>

The attribute specifies that the list of commands will extend the list of commands defined in the extends="true"

profile being .extended (see page 323)

Initialization commands are processed in two stages:

DbVisualizer 9.2 Users Guide

Page of 338 428

1.

2.

First stage is to execute all commands having the attribute set. Asmethod="runBeforeConditionsEval"

the attribute reveal, these commands are execute before any conditions are evaluated,

The second and last stage will execute all commands method="runBeforeConditionsEval" set. with no

This time any conditions are evaluated.

The reason for these stages is that the processing of initialization commands may also rely on conditions.

Here is an example how the new variable is used in the rest of the database profile:METACAT

<Command id="neoview.getCatalogs">

 <SQL>

 <![CDATA[

SELECT

 TRIM(CAT_NAME) AS CATALOG_NAME

FROM

${METACAT}.SYSTEM_SCHEMA.CATSYS C

WHERE

 CAT_NAME NOT LIKE _ISO88591'NONSTOP_SQLMX_%'

 AND CAT_NAME NOT IN (_ISO88591'NSMWEB', _ISO88591'NVSCRIPT', _ISO88591'METRIC',

 _ISO88591'MATRIX', _ISO88591'GENUSCAT', _ISO88591'MANAGEABILITY')

ORDER BY

 CATALOG_NAME

FOR READ UNCOMMITTED ACCESS

]]>

 </SQL>

</Command>

Here is another example for Oracle getting the property from the table and put the instance_type v$parameter

value in the variable.INSTANCE_TYPE

<InitCommands extends="true">

 <Command id="oracle.initGetInstanceType" method="runBeforeConditionsEval">

 <SQL>

 <![CDATA[

select value from v$parameter where name = 'instance_type';

]]>

 </SQL>

 <Output id="INSTANCE_TYPE" index="1"/>

 </Command>

</InitCommands>

Below show that only if have the value schema objects should be displayed in the INSTANCE_TYPE RDBMS

database objects tree:

<ObjectsTreeDef extends="false">

 <If test="#INSTANCE_TYPE eq 'RDBMS'">

 <GroupNode type="Schemas" label="Schemas">

DbVisualizer 9.2 Users Guide

Page of 339 428

 ...

 </GroupNode>

 </If>

 <GroupNode type="Properties" label="Session Properties" isLeaf="true"/>

 <GroupNode type="DBA" label="DBA Views">

 ...

 </GroupNode>

</ObjectsTreeDef>

Click these links for more information about the element and command (see page 339) conditions (see page

.395)

22.4.4 XML element - Commands

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

The element is a simple grouping element for elements.Commands Command

XML element - Command (see page 339)

Result Set (see page 341)

XML element - Input (see page 343)

XML element - Output (see page 344)

<Commands extends="true">

 <Command id="profile.xxx">

 ...

 </Command>

</Commands>

The attribute specifies that the list of commands will extend the list of commands defined in the extends="true"

profile being .extended (see page 323)

XML element - Command
The main purpose with the element is to run a single or a of SQL statements.Command SQL statement script

In most cases, the script should return a result set with 0 or multiple rows with the exception for actions (see

 which not necessarily need to return a result set, e.g., a "drop" action). The following show the page 371)

command element, its attributes and valid sub elements.

DbVisualizer 9.2 Users Guide

Page of 340 428

<Command id="sybase-ase.getLogins"

 method="dynamic"

 parsesql="true"

continueonerror="false">

 <SQL>

 ...

 </SQL>

 <Input>

 ...

 </Input>

 <Output>

 ...

 </Output>

 <Filter>

 ...

 </Filter>

</Command>

Attribute Description

id The command element is identified with a unique attribute. This id is referred in id

, and ObjectsTreeDef (see page 345) ObjectsViewDef (see page 355) ObjectsActionDef (see

 definitions using the attribute. The id naming convention for command page 371) idref

elements is to prefix with the name of the profile and a dot. Example , oracle.xxx

, and so on.sqlserver.xxx

method
dynamic

this is the default value and define that the SQL is a dynamic SQL statement as

opposed to setting it to JDBC which defines that the SQL is really a JDBC meta data

call

rather than SQL,

jdbc

See description for dynamic,

runBeforeConditionsEval

this value is only considered if the command is define in the InitCommands (see page

 section.336)

parsesql The default behavior is that the SQL may contains multiple SQL statements each delimited

by a semi colon (':'). Set this attribute to false to disable multiple SQL statements.

DbVisualizer 9.2 Users Guide

Page of 341 428

Attribute Description

If the SQL contain multiple SQL statements only one may produce a result set.

continueonerror This attribute is only valid in combination with and if the SQL contain parseSQL="true"

multiple SQL statements. If one of SQLs fail execution will continue with the next. The

.default value is false

The following command queries login information in Sybase ASE.

<Command id="sybase-ase.getLogins">

 <SQL>

 <![CDATA[

SELECT name "Name", suid "SUID", dbname "Default Database", fullname "Full Name",

language "Default Language", totcpu "CPU Time", totio "I/O Time", pwdate "Password Set"

FROM master.dbo.syslogins ORDER BY 1

]]>

 </SQL>

</Command>

The id for this command is . The reason for prefixing the id with the name of the profile issybase-ase.getLogins

that profiles can be extended and id's need to be unique.

This SQL example show a command with a statement using . If no aliases SELECT column aliases

are specified the column names should be used to refer the data.

Result Set
This is the result set for the previous query:

Name SUID Default

Database

Full

Name

Default

Language

CPU

Time

I/O Time Password Set

jstask 3 master (null) (null) 0 10 2009-12-22 09:53:50

probe 2 subsystemdb (null) (null) 0 0 2009-12-22 08:37:35

sa 1 master (null) (null) 182 168723 2009-12-22 08:36:54

How DbVisualizer handle the result set depends on whether the command is executed as a request in the

database objects tree (ObjectsTreeDef) or in the object view (ObjectsViewDef). If executed in the database

objects tree, each row in the result set will be represented by a node in the tree. If executed in the object view, it

is the viewer component that decide how the result will be displayed.

DbVisualizer 9.2 Users Guide

Page of 342 428

Another important difference between the database objects tree and the object view is that the tree is a

hierarchical structure of objects while the object view presents information about a specific object. An object that

is inserted in the database objects tree is a 1..1 mapping to a row from the result set. The end user will see

these objects (nodes) by some descriptive label, as defined in the ObjectsTreeDef. All data for the row from the

original result set is stored with the object in the tree and may be used in the , , , etc. label variables conditions

This is not the case in the ObjectsViewDef.

The following example put some light on this. Consider the previous result set and that it is used to create

objects in the database objects tree. The end user will see the following in DbVisualizer. (The label for each row

is the name column in the result set.):

Each of the , and nodes have all their respective data from the result set associated with the jstask probe sa

nodes. The data is referenced as , i.e., , commandId.columnName sybase-ase.getLogins.Name

 etc. All associated data for the node in the example is listed next:sybase-ase.getLogins.Default Database, sa

sybase-ase.getLogins.Name = sa

sybase-ase.getLogins.suid = 1

sybase-ase.getLogins.Default Database = master

sybase-ase.getLogins.Full Name = (null)

sybase-ase.getLogins.Default Language = (null)

sybase-ase.getLogins.CPU Time = 182

sybase-ase.getLogins.I/O Time = 168716

sybase-ase.getLogins.Password Set = 2009-12-22 08:36:54.576

The element definition presenting , and nodes in the previous DataNode (see page 345) jstask probe sa

screenshot use the associated data for the as follows:label

DbVisualizer 9.2 Users Guide

Page of 343 428

<DataNode type="Login" label="${sybasease.getLogins.Name}" isLeaf="true">

 <SetVar name="objectname" value="${sybasease.getLogins.Name}"/>

 <Command idref="sybasease.getLogins">

 <Output id="sybasease.getLogins.Name" index="1"/>

 <Output id="sybasease.getLogins.suid" index="2"/>

 </Command>

</DataNode>

XML element - Input

The sub element for a Command is only used when a command is being referred with the Input idref

attribute in any of , or ObjectsActionDef (see page 371) ObjectsTreeDef (see page 345)

. It has no effect specifying it for a Command in the Commands sectionObjectsViewDef (see page 355)

.

There are two types of commands, with and without dynamic input. The difference is that dynamic commands

accepts input data that is typically used to form the clause in SELECT SQLs. The previous example WHERE

illustrates a static SELECT statement (without dynamic data).

To allow for dynamic input, just add variables at the positions (can be anywhere) in the SQL statement that

should be replaced with dynamic values. The following is an extension of the previous example that allows for

dynamic input.

<Command id="sybase-ase.getLogins">

 <SQL>

 <![CDATA[

SELECT name "Name", suid "SUID", dbname "Default Database", fullname "Full Name",

language "Default Language", totcpu "CPU Time", totio "I/O Time", pwdate "Password Set"

FROM master.dbo.syslogins WHERE name = '${name}' and suid = '${suid}' ORDER BY 1

]]>

 </SQL>

</Command>

This example add two input variables: and . Values for these variables should then be supplied${name} ${suid}

wherever the command is referred for execution via the Input element.

The following is an example from the ObjectsTreeDef that specify the sub elements to to the Input map values

variables defined in the SQL.

<GroupNode type="Logins" label="Logins">

 <DataNode type="Login" label="${sybase-ase.getLogins.Name} isLeaf="true">

 <SetVar name="objectname" value="${sybase-ase.getLogins.Name}">

 <Command idref="sybase-ase.getLogins">

 <Input name="name" value="sa">

 <Input name="suid" value="${sybase-ase.getProcesses.suid}">

DbVisualizer 9.2 Users Guide

Page of 344 428

 </Command>

 </DataNode>

</GroupNode>

(Note that the Command element refer the command via the attribute which is then matched with the idref

corresponding for the Command).id

The variable in the SQL will be replaced with string .${name} sa

The value for the variable will in this case get the value of another variable, ${suid}

. So where is this variable defined? As explained in the sybase-ase.getProcesses.suid Result Set (see page

 section, all the data for a row in the result set is associated with the corresponding node in the database 341)

objects tree. In addition, it is possible to use all the data kept by the node and even its parent nodes (as

presented in the objects tree) in the input to commands. So to evaluate the ${sybase-ase.getProcesses.suid}

variable, DbVisualizer first look for the variable in the current node. If it doesn't exist, it continues to look through

the parent nodes until it reaches the root, which is the node in the objects tree. If the variable is Connections

not found, it will be set to the string representation for null, which is by default. Whenever a matching (null)

variable is found, DbVisualizer use its value and stops searching.

XML element - Output
As mentioned earlier, a specific column value in a result set row is referenced by the name of the column and

then prefixed by the command id. Sometimes this is not desirable and the definition can be used to Output

change this behavior. The following identifies a column in the result set by its , starting from 1, index number

and then force its name to be set to the of the attribute.value id

<Output id="sybase-ase.getLogins.Name" index="1">

<Output id="sybase-ase.getLogins.suid" index="2">

(The index attribute accepts either the name of the column or index number in the result set starting from the

first column at index 1).

The Output element can also be used to of columns in the result set by , alter the structure adding renaming

or columns.removing

<Output modelaction="add" index="THIS_IS_A_NEW_COLUMN" value="Rattle and Hum">

<Output modelaction="rename" index="2" name="PHONE">

<Output modelaction="drop" index="MOBILE_PHONE">

<Output modelaction="removeisnullrows" index="4">

<Output modelaction="removerowsifequalto" index="ORDINAL_POSITION" value="0"/>

DbVisualizer 9.2 Users Guide

Page of 345 428

modelaction

attribute

Description

add Adds a new column to all rows. The value attribute accepts variables using the ${...}

notation

rename Renames a column

drop Drops the specified column

removeisnullrows Removes the row if the value in the specified column is null

removerowsifequalto Removes the row if the data in the specified column is equal to the specified value

The rename operation is primarily used when building a custom command that is supposed to be used by a

viewer that requires predefined input by specific column names. Read more in the ObjectsViewDef (see page

 section.355)

22.4.5 XML element - ObjectsTreeDef

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

The element section controls how the database objects tree should be presented and which ObjectsTreeDef

commands should be executed to form its content (nodes).

XML element - GroupNode (see page 348)

XML element - DataNode (see page 349)

XML element - Command (see page 352)

XML element - Filter (see page 352)

XML element - SetVar (see page 354)

<ObjectsTreeDef extends="false">

 <GroupNode type="xxx" label="xxx">

 <DataNode type="yyy" label="yyy">

 ...

 </DataNode>

 </GroupNode>

</ObjectsTreeDef>

DbVisualizer 9.2 Users Guide

Page of 346 428

Setting the attribute to attribute specifies that the ObjectsTreeDef will extend the extends "true"

ObjectsTreeDef definition in the profile being .extended (see page 323)

The mapping between the graphical representation in DbVisualizer and its ObejctsTreeDef XML is as quite

straight forward:

Representation in DbVisualizer XML specification

<ObjectsTreeDef extend

s="false">

 <GroupNode type="

Databases">

 <DataNode type="

Catalog">

 <GroupNode type=

"Tables">

 <DataNode type

="Table"/>

 </GroupNode>

 <GroupNode type=

"SystemTables">

 <DataNode type

="SystemTable"/>

 </GroupNode>

 <GroupNode type=

"Views">

 <DataNode type

="View"/>

 </GroupNode>

 <GroupNode type=

"Users"/>

 <GroupNode type=

"Groups">

 <DataNode type

="Group"/>

 </GroupNode>

 <GroupNode type=

"Types"/>

 <GroupNode type=

"Triggers">

 <DataNode type

="Trigger"/>

 </GroupNode>

 <GroupNode type=

"Procedures">

 <DataNode type

="Procedure"/>

 </GroupNode>

 </DataNode>

 </GroupNode>

DbVisualizer 9.2 Users Guide

Page of 347 428

Representation in DbVisualizer XML specification

 <GroupNode type="DBA

">

 <GroupNode type="

ServerInfo"/>

 <GroupNode type="

Logins">

 <DataNode type="

Login"/>

 </GroupNode>

 <GroupNode type="

Devices">

 <DataNode type="

Device"/>

 </GroupNode>

 <GroupNode type="

RemoteServers"/>

 <GroupNode type="

Processes"/>

 <GroupNode type="

ServerRoles">

 <DataNode type="

ServerRole"/>

 </GroupNode>

 <GroupNode type="

Transactions"/>

 <GroupNode type="

Locks"/>

 </GroupNode>

</ObjectsTreeDef>

The screenshot in the above example show all representing the definitions in the nodes GroupNode

ObjectsTreeDef. One exception is the object, which has been expanded (, and child Logins jstask probe sa

objects) to illustrate how objects look like. The ObjectsTreeDef in the example has been simplified to DataNode

show only the attribute. (The label of the nodes as they appear in the screenshot is not listed in the type

example XML). The difference between a GroupNode and a DataNode is that GroupNode represent a static

object in the tree while DataNode is dynamically created based on result sets produced by running a SQL

statement. See GroupNode as a container holding other GroupNodes and DataNodes.

The database objects tree in DbVisualizer is the core visual component and it is the place where the user open

object details and launch actions. To connect and object actions (see page 371) object views (see page 355)

with a node in the objects tree, the attribute is used. The type should be a descriptive word for a node suchtype

as , , , and so on. The type also map to a predefined Table Schemas MaterializedQueryTable icon (see page

. Check the d for information how to show all bundled icons and their 393) atabase profile utilities (see page 398)

type mappings.

DbVisualizer 9.2 Users Guide

Page of 348 428

There is no limitation on the number of levels in the objects tree expressed by nesting GroupNode and

DataNode elements. A good rule is as always to keep it intuitive, simple and clean.

XML element - GroupNode
The GroupNode element represents a static object in the tree. A GroupNode do not have any associated SQL

and appear only once where they are defined. A GroupNode is primarily used for structural and grouping

purposes. The GroupNode element have the following attributes.

<GroupNode type="SystemTables" label="System Tables" isLeaf="false">

 ...

</GroupNode>

The attribute is optional (default is) and controls whether the GroupNode may have any child isLeaf false

objects or not. It can always be set to false, the effect in the visual database objects tree is then that an expand

handle always will be visible next to the icon, even if the node don't have any child nodes.

If isLeaf is set to true and there are child Group and/or Data -nodes, these will not appear. The result

may cause some frustration during the design of the database profile.

The complete set of attributes for the DataNode element:

Attribute Value Description

type The type of node

label The visual label for the node

isLeaf true/

false

Specifies if the node cannot have child objects

icon Icons are typically mapped using the type attribute with an icon name in the

 file(s). The attribute for a GroupNode can be seticon.prefs (see page 393) icon

to specify an alternative icon

drop-label-not-equal Do not add the node if the label is not equal to this value or variable

action drop drop is useful when extending another database profile to remove the

DataNode and all its child nodes

order-before Specifies the order of this GroupNode among a collection of nodes having the

same parent node. It can either be an index starting at 0 (first) or a node type.

Ex. will order this GroupNode before nodes defined by order-before="Views"

the attributetype="Views"

DbVisualizer 9.2 Users Guide

Page of 349 428

Attribute Value Description

order-after Specifies the order of this GroupNode among a collection of nodes having the

same parent node. It can either be an index starting at 0 (first) or a node type.

Ex. will order this GroupNode after the first node definitionorder-after="0"

XML element - DataNode
The DataNode element feeds the tree with nodes produced by a . The example in the Command Command (

 section querying for all logins in Sybase ASE look as follow in the ObjectsTreeDef:see page 339)

<GroupNode type="Logins" label="Logins">

 <DataNode type="Login" label="${sybase-ase.getLogins.Name}" isLeaf="true">

 <Command idref="sybase-ase.getLogins"/>

 </DataNode>

</GroupNode>

First, there is a element with the purpose to group all child objects in a Logins node. The GroupNode DataNode

in this example have the same attributes as the GroupNode, the type is however singular instead of pluralLogin

 (as it is for the GroupNode). This difference is important when the user decide to open one of the nodes,Logins

since the object view will show the matching views based on the object type. For Logins a list of all logins is

displayed while opening a Login, details for that specific login is displayed.

The DataNode definition can be seen as a template, as the associated command fetches rows of data from the

database and DbVisualizer uses the DataNode definition to create one node per row in the result set.

The attribute for the data node introduce the use a variable. The real value for the label will, in this label

example, be the value in the column produced by the command (variable names Name sybase-ase.getLogins

are automatically prefixed with the command id that produced them).

The element uses the attribute to identify the command that should be executed. The Command idref

command in this case produce a with 3 rows and 8 columns. The result will be two result set (see page 341)

nodes for each row, with the label of the column in the result set.Name

DbVisualizer 9.2 Users Guide

Page of 350 428

The label can be changed by setting it to any other valid variable, a combination of several variables or even

static text:

label="${sybase-ase.getLogins.Name} (${sybase-ase.getLogins.Default Database})"

The example above results in the following labels:

jstask (master)

probe (subsystemdb)

sa (master)

The complete set of attributes for the DataNode element:

Attribute Value Description

type The type of node

label The visual label for the node

icon Icons are typically mapped using the type attribute with an icon name in the

 file(s). The attribute for a DataNode can be icon.prefs (see page 393) icon

set to specify an alternative icon.

A condition can be specified which is used to choose an icon based on

evaluating other variables for the node.

Ex. icon="#dataMap.get('mimer.getIndexes.IS_UNIQUE').

DbVisualizer 9.2 Users Guide

Page of 351 428

Attribute Value Description

equals('YES') ? 'uniqueIcon' : (#dataMap.get('

mimer.getIndexes.IS_UNIQUE').equals('FK') ? 'fkIcon' : '

indexIcon')"

actiontype Object type used for object actions

isLeaf true/

false

Specifies if the node cannot have child objects

sort A comma separated list of names/variables used for sorting. This is useful if

you cannot get the database to properly sort the result set using a ORDER

BY clause in the SELECT statement.

drop-label-not-equal Do not add the node if the label is not equal to this value or variable

stop-label-not-equal The node will be a leaf if the label doesn't match the specified value or

variable value

warnstate A condition expression returning either true or false. For true, show a

warning overlay icon for the node.

Ex: errorState="!#dataMap.get('oracle.getTriggers.STATUS'

). equals('ENABLED')"

errorstate A condition expression returning either true or false. For true, show an error

overlay icon for the node.

Ex: errorState="!#dataMap.get('

oracle.getObjectsByType.STATUS'). equals('VALID')"

is-empty-output continue

/stop

If result set is empty, use this to control whether child GroupNode/

DataNodes should be added anyway

action keep/

drop

drop is useful when extending another database profile to remove the

DataNode and all its child nodes

order-before Specifies the order of this DataNode among a collection of nodes having the

same parent node. It can either be an index starting at 0 (first) or a node

type. Ex. will order this node before nodes defined by order-before="View"

the attributetype="View"

order-after Specifies the order of this DataNode among a collection of nodes having the

same parent node. It can either be an index starting at 0 (first) or a node

type. Ex. will order this DataNode after the first node order-after="0"

definition

DbVisualizer 9.2 Users Guide

Page of 352 428

The Command definition in the example above is simple, since it doesn't use any variables in the SQL. Continue

reading the next section for details about passing input data to commands.

XML element - Command
The SQL used to generate the data used by the DataNodes are defined in the element.Command

A command is referenced by the attribute and that must already be defined in the idref id Commands (see page

 section of the profile. For most DataNode definitions input must be supplied with the command and this is 339)

done by adding elements as children to the Command.Input

 <DataNode type="Login" label="${sybase-ase.getLogins.Name}" isLeaf="true">

 <Command idref="sybase-ase.getLogins">

 <Input name="name" value="sa">

 <Input name="suid" value="${sybase-ase.getProcesses.suid}">

 </Command>

</DataNode>

The for a variable specified in an element is evaluated using the syntax outlined in the value Input result set (

 section.see page 341)

For detailed information about the capabilities with the Command element, check the Command (see

 section.page 339)

XML element - Filter
The Filter element is specific for Command elements that appear in the DataNode element. A filter define which

data for a DataNode that can be searched in filter. This filter functionality is commonly referred as the Database

 in DbVisualizer. The filtering setup appears below the database objects Objects Tree Filtering (see page 154)

tree, and the following example shows that filtering may be specified for these object types:

Catalog

Table

System Table

View

User

Group

Trigger

Procedure

For each of the filter definitions, one or several columns can be included in the filtering criteria.

DbVisualizer 9.2 Users Guide

Page of 353 428

<DataNode type="View" label="${sybase-ase.getViews.Name}" isLeaf="true">

 <Command idref="sybase-ase.getViews">

 <Filter type="View" name="View Table">

 <Column index="TABLE_NAME" name="Name"/>

 </Filter>

 </Command>

</DataNode>

DbVisualizer 9.2 Users Guide

Page of 354 428

The above filter definition specifies a filter for the View object type. The attribute specifies the label of the name

filter as it appears in the object type drop-down list. The nested Column element defines the index, which should

either be a column name in the result set or an index number for the column. The attribute specifies the name

name of the column as it appears in the filter pane.

Several Column elements may be specified for a Filter element.

XML element - SetVar
The SetVar element is used in the ObjectsTreeDef for GroupNode and DataNode elements. Some object types

have special meaning in DbVisualizer. Two examples are the and object types. For DataNodeCatalog Schema

objects, you must use SetVar elements to identify them with the name attribute set to or , catalog schema

respectively.

<DataNode type="Catalog" label="${getCatalogs.TABLE_CAT}">

 <SetVar name="catalog" value="${getCatalogs.TABLE_CAT}">

</DataNode>

All DataNodes except Catalog and Schema must use SetVar to set the variable:objectname

<DataNode type="View" label="${sybase-ase.getViews.Name}" isLeaf="true">

 <SetVar name="objectname" value="${sybase-ase.getViews.Name}">

 <SetVar name="rowcount" value="true">

</DataNode>

The variable is used to identify the object represented by the data node, so that it can be uniformly objectname

referenced in and . Its value should be the identifier object views (see page 355) object actions (see page 371)

for the object as it is identified in the database, for example a table name or view name.

The variable is optional (default is false) and controls whether the object supports showing row count rowcount

information when right-click menu choice is enabled for the Show/Hide Table Row Count (see page 132)

database connection.

Another optional variable (not shown in the example above) is named (default is false). If set to trueacceptInQB

, nodes of this type can be used in the . It should only be set to true for object Query Builder (see page 189)

types representing tabular data that can be queried with an SQL SELECT statement, such as tables, views,

materialized views, etc.

Variables defined with SetVar are by default invisible in for example the . If younode form viewer (see page 355)

want to override this behavior then add the attribute and set its value to . If you want to drop a action show

variable completely from the node simply set the attribute to .action drop

DbVisualizer 9.2 Users Guide

Page of 355 428

Using SetVar for GroupNode's is used to set static values (since GroupNode's doesn't execute a Command).

This may be used to pass a static value for later use in an Action or DataView. See vertica.xml which illustrates

using SetVar for GroupNode's.

22.4.6 XML element - ObjectsViewDef

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

The ObjectsViewDef element define all views for the object types in the objects tree. These views are displayed

in the area for the selected object. Which views should appear when selecting a Object View (see page 33)

node in the tree is based on the object type for the tree node and the corresponding object view (see page 355)

definition.

XML element - ObjectView (see page 357)

XML element - DataView (see page 357)

Viewers (see page 359)

Viewer - grid (see page 359)

Adding custom menu items in the grid (see page 361)

Setting initial max column width (see page 363)

Viewer - text (see page 363)

Specify what column to browse (see page 364)

Enable SQL formatting of the data (see page 364)

Adding newline to each row (see page 364)

Viewer - form (see page 365)

Viewer - node-form (see page 366)

Hiding columns (see page 366)

Viewer - table-refs (see page 366)

Viewer - tables-refs (see page 367)

Viewer - table-data (see page 368)

Disable data editing (see page 369)

Viewer - table-rowcount (see page 369)

XML element - Command (see page 370)

XML element - Input (see page 370)

XML element - Message (see page 370)

<ObjectsViewDef extends="true">

 <ObjectView type="xxx">

 <DataView id="yyy" label="yyy">

DbVisualizer 9.2 Users Guide

Page of 356 428

 ...

 </DataView>

 </ObjectView>

</ObjectsViewDef>

The attribute specifies that this definition will extend the ObjectsViewDef definition in the extends="true"

database profile being .extended (see page 323)

When an object is opened in the database tree (in the screenshot below) a corresponding object view tab is sa

created (right in the sample). Each of the DataView elements in the ObjectView will appear as sub tabs in the

object view tab. The selected object and its information is passed to each of the data views for processing and

presentation. The following example show the Object View in DbVisualizer and its ObjectView element definition

.

Representation in DbVisualizer XML definition

<ObjectView type="Logins">

 <DataView type="Logins"

label="Logins"

 viewer="grid">

 <Command idref="

sybase-ase.getLogins"/>

 </DataView>

</ObjectView>

<ObjectView type="Login">

 <DataView type="Info" label

="Info"

 viewer="node-form

"/>

 <DataView type="Databases"

label="Databases"

 viewer="grid">

 <Command idref="

sybase-ase.getLoginDatabases"

/>

 </DataView>

 <DataView type="Roles"

label="Roles"

 viewer="grid">

 <Command idref="

sybase-ase.getLoginRoles"/>

 </DataView>

</ObjectView>

DbVisualizer 9.2 Users Guide

Page of 357 428

The screenshot and the database tree show both the node and its child nodes, , and . Logins jstask probe sa

These nodes are instances of the object types (labeled Logins in the screenshot) and (the three Logins Login

sub nodes: , and).jstask sa probe

The ObjectView XML definitions above shows the data views for these two types, and . Opening Logins Login

the node labeled in the tree will show the object view for the definition Logins <ObjectView type="Logins">

while opening the node labeled , or will show the object view for the jstask probe sa <ObjectView type="Login

 .">

The example shows being selected. Its DataView definitions displayed as tabs in the object view are (by labelsa

):

Info

Databases

Roles

XML element - ObjectView
The ObjectView element is associated with an object type and groups all DataView elements that appear when

the object type is selected in the database objects tree. Here follows the ObjectView definition for the Login

object type.

<ObjectView type="Login">

 ...

</ObjectView>

The attribute value is used when a node is clicked in the database objects tree to map with the type

corresponding ObjectView definition. The following lists the attributes for ObjectView:

Attribute Value Description

type The type of the ObjectView as declared in the GroupNode and DataNode elements in the

ObjectsTreeDef section

action drop drop is useful when extending another database profile to remove the ObjectView and all

its child views

XML element - DataView
The DataView element is comparable with the element in the ObjectsTreeDef. It DataNode (see page 355)

defines what SQL (command) should be executed, labeling, viewer type (presentation form) and other

characteristics. The following is the DataView definitions for the object type. (The ObjectView element is Login

part of the sample just for clarification).

DbVisualizer 9.2 Users Guide

Page of 358 428

<ObjectView type="Login">

 <DataView type="sybasease-login-info" icon="Info" label="Info" viewer="node-form"/>

 <DataView type="sybasease-login-databases" icon="Databases" label="Databases" viewer="grid">

 <Command idref="sybase-ase.getLoginDatabases"/>

 </DataView>

 <DataView type="sybasease-login-roles" icon="Roles" label="Roles" viewer="grid">

 <Command idref="sybase-ase.getLoginRoles"/>

 </DataView>

</ObjectView>

All three DataView elements have a attribute identifying how the data in the view should be be presentedviewer

, e.g., as a grid or a form. See the next sections for a list of viewers. The following lists all attributes for

DataView:

Attribute Value Description

id Every DataView element must have a unique id which is not only unique in the

current profile but also with all id's in extended profiles

To make sure the id is unique use the following recommended format:

profileName-objectViewType-viewerLabel.

Ex: sybasease-login-databases

(The id should not contain any empty space or special characters

other than dash ("-")).

label The label for the viewer as it will appear in the tab

icon The icon as defined in the file(s)icons.prefs (see page 393)

viewer One of: grid, text, form, node-form, table-refs, tables-refs, table-date,

table-rowcount, message, navigator, ddl, ProcedureViewer. See the viewers

section in this document for more information

drop-label-not-equal Drop the viewer if its label is not equal to the value of this attribute

class Used to specify a custom Java class used as the viewer

classargs Used to pass arguments to a custom viewer

action drop drop is useful when extending another database profile to remove the

DataView

doclink Relative HTML link to the related chapter in the users guide

DbVisualizer 9.2 Users Guide

Page of 359 428

Attribute Value Description

order-before Specifies the order of this DataView among a collection of viewers having the

same parent ObjectView. It can either be an index starting at 0 (first) or a node

type. Ex. will order this DataVieworder-before="sybasease-login-databases"

before viewers defined by the attributeid="sybasease-login-databases"

order-after Specifies the order of this DataView among a collection of viewers having the

same parent ObjectView. It can either be an index starting at 0 (first) or a node

type. Ex. will order this DataView order-after="sybasease-login-databases"

after viewers defined by the attributeid="sybasease-login-databases"

Viewers
The viewer attribute for a DataView define how the data for the viewer should be presented. The following

sections walk through the supported viewers.

The following sample illustrates the viewer attribute.

<ObjectView type="Login">

 <DataView type="Info" label="Info" viewer="node-form"/>

</ObjectView>

DataView definitions may be nested and the viewers are then presented with the nested DataView in the lower

part of the screen.

Viewer - grid

The viewer presents a result set in a grid with standard grid features such as search, copy, fit columns, grid

export and so on. The result set is presented exactly as it is produced by the associated and any Command

optional processing.Output

Here is a sample of the XML for the grid viewer:

<DataView type="oracle-columns-columns" icon="Columns" label="Columns" viewer="grid">

 <Command idref="oracle.getColumns">

 <Input name="owner" value="${schema}"/>

 <Input name="table" value="${objectname}"/>

 </Command>

</DataView>

And here is a screenshot of the standard grid viewer created from the above definition.

DbVisualizer 9.2 Users Guide

Page of 360 428

The nesting capability for grid viewers is really powerful, as it can be used to create a view of the drill-down

data. Consider the scenario with a grid viewer showing all Trigger objects. Wouldn't it be nice to offer the user

the capability to display the trigger source when selecting a row in the list? This is easily accomplished with the

following definition:

<DataView id="oracle-table-triggers" icon="Trigger" label="Triggers" viewer="grid">

 <Command idref="oracle.getTriggers">

 <Input name="owner" value="${schema}"/>

 <Input name="condition" value="${triggersCondition}"/>

 </Command>

 <DataView id="oracle-table-triggers-source" icon="Source" label="Source" viewer="text">

 <Input name="dataColumn" value="text"/>

 <Input name="formatSQL" value="true"/>

 <Command idref="oracle.getTriggerSource">

 <Input name="owner" value="${OWNER}"/>

 <Input name="name" value="${TRIGGER_NAME}"/>

 </Command>

 </DataView>

 <DataView id="oracle-table-triggers-info" icon="Info" label="Info" viewer="node-form"/>

</DataView>

The first DataView element define the top grid viewer labeled and the command to get the resultTriggers

set for it

The next DataView is the labeled , specifying various input parameter for the nested text viewer Source

viewer along with the command to get the source for the trigger. The difference here is that the input

parameters for this command reference column names in the top grid. Since this viewer is nested, it will

automatically be notified whenever an entry in the top grid is selected

DbVisualizer 9.2 Users Guide

Page of 361 428

The third DataView labeled is presented as a tab next to the viewer, and presents additional Info Source

information about the selected trigger

The following screenshot illustrates the above sample:

Adding custom menu items in the grid

The grid right-click menu contain a lot of standard actions. Custom commands can be defined in the DataView

element and these will appear last in the menu.

<Input name="menuItem" value="Open in New Tab...">

 <Input name="action" value="open-object-in-new-tab-command ${schema||OWNER}${object||TABLE_NAME}

"/>

</Input>

<Input name="menuItem" value="Open in Floating Tab...">

 <Input name="action" value="open-object-in-floating-tab-command ${schema||OWNER}${object||

TABLE_NAME}"/>

</Input>

 <Input name="menuItem" value="Script: SELECT ALL">

 <Input name="command" value="select * from ${schema||OWNER}${object||TABLE_NAME}"/>

</Input>

 <Input name="menuItem" value="Script: DROP TABLE">

 <Input name="command" value="drop table ${schema||OWNER}${object||TABLE_NAME}"/>

</Input>

The element define a menu item entry that should appear in the grid right-click <Input name="menuItem">

menu. The for the menuItem is the for the item as it will appear in the menu while the child value label Input

element with is the that should be produced for all selected rows when the name="command" SQL command

DbVisualizer 9.2 Users Guide

Page of 362 428

menu item is selected. Invoking a custom menu item will the produced SQL directly but rather not execute

. In the SQL Editor you will then need to manually execute the script and copy the statements to a SQL Editor

track the result.

The attribute declare that the value is a pre-defined action. Valid actions are:name="action"

open-object-in-new-tab-command

open-object-in-floating-tab-command

Any variables in the SQL statement should identify column names in the result set. The user may select any

cells in the grid and choose a custom menu item. It is only the actual rows that are picked from the selection as

the columns are predefined by the menuItem declaration.

The variables specified in these examples starts with and . These define that the ${schema=...} ${object=...}

first variable represents a schema variable while the second defines an object. This is needed for DbVisualizer

to determine whether delimited identifiers should be used and if identifiers should be qualified, as defined in the

connection properties for the database.

Here is a sample:

DbVisualizer 9.2 Users Guide

Page of 363 428

Setting initial max column width

Some result sets may contain wide columns. The following parameter sets an initial maximum width for all

columns in the grid.

<Input name="columnWidth" value=""/>

Viewer - text

The viewer presents data from in a result set in a text browser (read only). This viewer is text one column

typically used to present large chunks of data, such as source code, SQL statements, etc. If the result set

contain several rows, the text viewer reads the data in the column for each row and present the combined data.

Here is a sample of the XML for the text viewer:

<DataView id="oracle-table-triggers-source" icon="Source" label="Source" viewer="text">

 <Input name="dataColumn" value="text"/>

 <Input name="formatSQL" value="true"/>

DbVisualizer 9.2 Users Guide

Page of 364 428

 <Input name="newline" value""/>

 <Command idref="oracle.getTriggerSource">

 <Input name="owner" value="${OWNER}"/>

 <Input name="name" value="${TRIGGER_NAME}"/>

 </Command>

</DataView>

And here is a screenshot of the Source tab based on the previous definition.

Specify what column to browse

By default, the text viewer uses the data in first column. This behavior can be controlled by using the

dataColumn input parameter. Simply specify the name of the column in the result set or its index (starting at 1

from the left).

<Input name="dataColumn" value=""/>

Enable SQL formatting of the data

The text viewer have the function, which when invoked formats the SQL buffer in the viewer. SQL Formatting

The input parameter is used to control whether formatting should be made automatically when the formatSQL

data first displayed. If formatSQL is not specified, no initial formatting is made.

<Input name="formatSQL" value=""/>

Adding newline to each row

DbVisualizer 9.2 Users Guide

Page of 365 428

For a result set containing multiple rows and all rows should be displayed in a text viewer, the newline

parameter define the character(s) that should separate the rows in the viewer. A somewhere in the value will \n

be converted to a platform dependent newline sequence in the viewer. By default there is no newline sequence

between multiple rows.

<Input name="newline" value="\n"/>

Viewer - form

The viewer displays row(s) from a result set in a form. If several rows are in the result, they are presented form

in a list. Selecting one row from the list presents all columns and data for that row in a form.

Here is a sample of the XML for the form viewer:

<DataView id="oracle-table-info" icon="Info" label="Info" viewer="form" order-before="0">

 <Command idref="oracle.getTable">

 <Input name="owner" value="${schema}"/>

 <Input name="table" value="${objectname}"/>

 </Command>

</DataView>

And here is a screenshot of the Info tab based on the previous definition.

DbVisualizer 9.2 Users Guide

Page of 366 428

Viewer - node-form

The viewer presents all data associated with the selected DataNode (variables). Here is a sample of node-form

the XML for the node-form viewer:

Hiding columns

There may be data associated with the object that you don't want to present in the node form. The hidecolumn

input parameter control what data for the object that should be invisible and you may repeat this option as many

times you like to handle multiple variables that shouldn't be displayed.

<Input name="hidecolumn" value="oracle.getKeys.TABLE_OWNER"/>

Viewer - table-refs

The viewer shows the references graph for the current object (this must be an object supporting table-refs

referential integrity constraints, such as a Table),

Here is a sample of the XML for the table-refs viewer:

<DataView id="generic-table-references" icon="References" label="References" viewer="table-refs"/>

And here is a screenshot of the References tab based on the previous definition.

DbVisualizer 9.2 Users Guide

Page of 367 428

Viewer - tables-refs

The viewer shows the references graph for in the result set (the result set must tables-refs several tables

contain objects supporting referential integrity constraints, such as a Table). Here is a sample of the XML for the

tables-refs viewer:

<DataView id="oracle-tables-references" icon="References" label="References" viewer="tables-refs">

 <Command idref="oracle.getTables">

 <Input name="owner" value="${schema}"/>

 <Output modelaction="rename" index="OWNER" name="TABLE_SCHEM"/>

 <Output modelaction="rename" index="TABLE_NAME" name="TABLE_NAME"/>

 </Command>

</DataView>

And here is a screenshot of the References tab based on the previous definition.

DbVisualizer 9.2 Users Guide

Page of 368 428

Viewer - table-data

The viewer shows the data for a table in a grid with various features such as filtering and editing (if table-data

licensed) functionality.

Information presented in the grid is obtained automatically by the viewer via a standard SELECT *

 statement, i.e., the object type having this viewer defined must be able to support getting FROM table

a result set via this SQL statement.

It is important that the in the connection setup is properly set to match the database Database Type

being accessed. The reason is that the identifiers (schema, database, table) are delimited

automatically. Delimiters are database specific and if having the wrong database type set it may result

in an error getting the result.

Here is a sample of the XML for the table-data viewer:

<DataView id="oracle-view-data" icon="Data" label="Data" viewer="table-data"/>

 <Input name="disableEdit" value="false"/>

</DataView>

DbVisualizer 9.2 Users Guide

Page of 369 428

And here is a screenshot of the based on the previous definition.Data tab

Disable data editing

The default strategy for the table-data viewer is to automatically check whether the data can be edited or not. If

editing is allowed a few related buttons will appear in the toolbar. However, sometimes you may want to disable

editing completely for the viewer. Do this with the following input element:table-data

<Input name="disableEdit" value="true"/>

Viewer - table-rowcount
The table-rowcount viewer shows the row count for a (table) object.

The row count is obtained automatically by the viewer via a traditional SELECT COUNT(*) FROM

 statement, i.e., the object type having this viewer defined must be able to support getting a resulttable

set via this SQL statement.

It is that the in the connection setup is properly set to match the database being Database Type

accessed. The reason is that the identifiers (schema, database, table) are delimited automatically.

Delimiters are database specific and if having the wrong database type set it may result in an error

getting the result.

Here is a sample of the XML for the table-rowcount viewer:

DbVisualizer 9.2 Users Guide

Page of 370 428

<DataView id="generic-table-rowcount" icon="RowCount" label="Row Count" viewer="table-rowcount"/>

And here is a screenshot of the Row Count tab based on the previous definition.

XML element - Command
Check the section for more information.commands (see page 339)

XML element - Input
The element is supported for some of the data viewers. Check the viewer sections for more information.Input

XML element - Message
The element is very simple as it just define a message that should appear at the top of the viewer. Message

The text in the message may contain HTML tags such as (bold), <i> (italic),
 (line break), etc.

Here is a sample of the XML for using the message element in a grid viewer:

<ObjectView type="RecycleBin">

 <DataView id="oracle-recyclebin-recyclebin" icon="RecycleBin" label="Recycle Bin" viewer="grid">

 <Command idref="oracle.getRecycleBin">

 <Input name="schema" value="${schema}"/>

 <Input name="login_schema" value="${dbvis-defaultCatalogOrSchema}"/>

 </Command>

 <Message>

 <![CDATA[

<html>

These are the tables currently in the recycle bin for this schema. Right click on a bin

table in objects tree to restore or permanently purge it.

Note: The recycle bin is always empty if not looking at the bin for your

login schema (default).

</html>

]]>

DbVisualizer 9.2 Users Guide

Page of 371 428

 </Message>

 </DataView>

</ObjectView>

And here is a screenshot of the based on the previous definition.Recycle Bin tab

22.4.7 XML element - ObjectsActionDef

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

Introduction (see page 372)

Variables (see page 373)

XML element - ActionGroup (see page 376)

XML element - Action (see page 376)

XML element - Input (see page 381)

Style - text (single line) (see page 384)

Style - text-editor (multi line) (see page 384)

Style - number (see page 384)

Style - password (see page 384)

Style - list (large number of choices) (see page 385)

Style - radio (limited number of choices) (see page 386)

Style - check (true/false, on/off, selected/unselected) (see page 386)

Style - separator (visual divider between input controls) (see page 386)

Style - grid (configurable multi row/columns input) (see page 387)

DbVisualizer 9.2 Users Guide

Page of 372 428

XML element - SetVar (see page 389)

XML element - Confirm (see page 391)

XML element - Result (see page 391)

XML element - Command (see page 391)

XML element - Message (see page 392)

Action showing just a message (see page 392)

Introduction
Objects actions (ObjectsActionDef) define what operations are available for the object types defined in the

. Object actions are powerful, as they offer an extensive number of features to define actions forObjectsTreeDef

almost any type of object operation.

In DbVisualizer, the object actions menu is accessed via the right-click menu in the objects tree or via the

 button in the object view:Actions

DbVisualizer 9.2 Users Guide

Page of 373 428

All of the operations for the current object in the figure above are expressed in the ObjectsActionDef Table

section in the database profile. The implementation for these actions are either declared entirely in XML via

standard definitions, or via custom definitions. (The Java API for action handlers is not yet documented). The

following screenshot shows the dialog appearing when executing an action via a standard XML definition:

The first field in the dialog, , is always present and shows the alias of the database Database Connection

connection the current object is associated with. At the bottom, there is a control that, when checkedShow SQL

, displays the final SQL for the action. The bottom right buttons are used to run the action (the label of the button

may be or based on the action mode), or to the action completely.Execute Script Cancel

Variables
Variables are used to reference data for the object for which the action was launched, and the data for all its

parent objects in the objects tree. Variables are also used to reference input data specified by the user in the

actions dialog. Variables are typically used in the , , and elements.Command Confirm Result SetVar

Variables are specified in the following format:

${variableName}

DbVisualizer 9.2 Users Guide

Page of 374 428

The following is an example for a action. It first shows the name of the database connection (Rename Table

which is always present) with information about the table being renamed. The last two input fields should be

entered by the user and identify the new name of the table. The component is a list from which New Database

the user should select the name of the new database. The new table name should be entered in the New Table

 field.Name

If the control is checked, you will see any edits in the dialog being reflected immediately in the final Show SQL

.SQL Preview

The complete action definition for the previous action is as follows:Rename Table

<Action id="mysql-table-rename" label="Rename Table" reload="true" icon="rename">

 <Input label="Database" style="text" editable="false">

 <Default>${catalog}</Default>

 </Input>

 <Input label="Table" style="text" editable="false">

 <Default>${objectname}</Default>

 </Input>

 <Input label="New Database" name="newCatalog" style="list">

 <Values>

 <Command><SQL><![CDATA[show databases]]></SQL></Command>

 </Values>

 <Default>${catalog}</Default>

 </Input>

 <Input label="New Table Name" name="newTable" style="text"/>

 <Command>

 <SQL>

DbVisualizer 9.2 Users Guide

Page of 375 428

 <![CDATA[

rename table `${catalog}`.`${objectname}` to `${newCatalog}`.`${newTable}`

]]>

 </SQL>

 </Command>

 <Confirm>

 <![CDATA[

Confirm rename of ${catalog}.${objectname} to ${newCatalog}.${newTable}?

]]>

 </Confirm>

 <Result>

 <![CDATA[

Table ${catalog}.${objectname} renamed to ${newCatalog}.${newTable}!

]]>

 </Result>

</Action>

First, there is the element with some attributes specifying the label of the action, icon and whether the Action

objects tree (and the current object view) should be reloaded after the action has been executed.

The next block of elements are fields defining the data for the action. As you can see in the example, Input

there is a variable in the Default element for the Database input and an variable in ${catalog} ${objectname}

the element for the Table input. The values for these variables are fetched from the current object in the Default

objects tree (or). Variables are evaluated by first checking if the variable is in the scope GroupNode DataNode

of the action dialog (i.e., another input field), then if the variable is defined for the object for which the action was

launched, and then if it is defined for any of the parent objects until the root object in the tree (Connections

node) is reached. If a variable is not found, its value is set to .(null)

In the XML sample, the value of the variable is the name of the database in which the table object is ${catalog}

stored. The is the current name of the table (these variables are described in the ${objectname}

 section).ObjectsTreeDef (see page 345)

The input field is a list component showing a list of databases based on the result set of the New Database

specified command. The setting for the database will be the database in which the table is SQL Default

currently stored based on the variable.${catalog}

The input field is a simple text field in which the user may enter any text (the new table name)New Table Name

.

Both the and fields are editable and should be specified by the user. This New Database New Table Name

data is then available via the variables specified in the name attribute, i.e., and .newCatalog newTable

The element declares the statement that should be executed by the action. In this example, theCommand SQL

SQL combines static text with variables.

DbVisualizer 9.2 Users Guide

Page of 376 428

XML element - ActionGroup
The element is a container and groups a collection of , and ActionGroup ActionGroup Action Separator

elements. It is used to define what actions should be present for a particular object type. It also define in what

order the actions should appear in the menu and where any separators should be located. ActionGroup

elements can be nested and these will be displayed as sub menus in DbVisualizer.

<ActionGroup type="Table">

 <Action id="xxx">

 ...

 </Action>

</ActionGroup>

The attributes for an ActionGroup are:

Attribute Value Description

type This defines what object type the ActionGroup is mapped to. This attribute is required

and valid only for top level ActionGroup elements (not nested ActionGroup elements).

An example is the object type, the corresponding Table <ActionGroup type="Table">

will only be displayed when the current object is a Table

label This attribute is required for nested ActionGroup elements and is the label displayed in

the sub menu. (This attribute have no effect on top level ActionGroup elements)

action drop drop is useful when extending another database profile to remove the ActionGroup and

all its child elements

order-before Specifies the order of this ActionGroup among a collection of ActionGroup elements

located at the same level. It can either be an index starting at 0 (first) or a node type. Ex

. will order this ActionGroup before ActionGroup elements order-before="Views"

defined by the attributetype="Views"

order-after Specifies the order of this ActionGroup among a collection of ActionGroup elements

located at the same level. It can either be an index starting at 0 (first) or a node type. Ex

. will order this ActionGroup after ActionGroup elements defined order-after="Views"

by the attributetype="Views"

XML element - Action
The element defines the characteristics of the action. The following show the complete definition of the Action

 action in Oracle.Drop Table

<Action id="oracle-table-drop" label="Drop Table" reload="true" icon="remove">

 <Input label="Schema" style="text" editable="false">

DbVisualizer 9.2 Users Guide

Page of 377 428

 <Default>${schema}</Default>

 </Input>

 <Input label="Table" style="text" editable="false">

 <Default>${objectname}</Default>

 </Input>

 <Input label="Drop Referential Integrity Constraints" name="cascade" style="check"

 tip="Enable this to drop all referential integrity constraints

 that refer to primary and unique keys in the dropped table">

 <Values>cascade constraints</Values>

 </Input>

 <If test="#dm.getDatabaseMajorVersion() gte 10">

 <Input label="Purge Space" name="purge" style="check"

 tip="Enable this if you want to drop the table and

 release the space associated with it in a single step">

 <Values>purge</Values>

 </Input>

 </If>

 <Else>

 <SetVar name="purge" value="''"/>

 </Else>

 <Command>

 <SQL>

 <![CDATA[drop table "${schema}"."${objectname}" ${cascade} ${purge}]]>

 </SQL>

 </Command>

 <Confirm>

 Really drop table ${schema}.${objectname}?

 </Confirm>

 <Result>

 Table ${schema}.${objectname} has been dropped!

 </Result>

</Action>

The available attributes for the element:Action

Attribute Value (bold = default) Description

id Every Action element must have a unique id

which is not only unique in the current profile but

also with all id's in extended profiles.

The recommended format is

profileName-actionGroupType-action

.

Ex: oracle-table-drop

icon

DbVisualizer 9.2 Users Guide

Page of 378 428

Attribute Value (bold = default) Description

The name of the icon that should be displayed

next to the label in the actions menu

label The label for the action as it should be displayed

in the list of actions and in the actions dialog

reload true/false Specifies if the parent node (in the objects tree)

should be reloaded after successful execution.

This is recommended for actions that change the

visual appearance of the object, such as remove,

add or name change

mode
execute

show the action dialog,

process user input and

execute the final SQL

within the scope of the

action window

script

show the action dialog,

process user input and

send the final SQL to the

SQL Commander

script-immediate

will not show the action

dialog but instead pass

the final SQL directly to

the SQL Commander

Specifies how the action will be prepared and

displayed

processmarkers
true

IN parameter markers in

the SQL are processed

with the JDBC driver. Not

all drivers supports this

false

(default) parameter

markers are not be

processed

DbVisualizer 9.2 Users Guide

Page of 379 428

Attribute Value (bold = default) Description

resulttype
resultset

this is the default and

indicates that the result is

a standard result set

produced by a SQL

SELECT statement or

stored procedure

dbmsoutput

this is specific for Oracle

databases only and

specifies that the output is

produced by the

DBMS_OUTPUT stored

procedure

Oracle only. Specifies what kind of result is

produced by the action

resultaction
ask

if the action produced a

result according to the

setting of resulttype, ask

the user whether the

result should be displayed

in a window or copied as

text to the SQL

Commander

show

if the action produced a

result according to the

setting of resulttype, show

it in a window. resulttype

 shows the ="resultset"

result in a grid while for

 the result is dbmsoutput

displayed in a text viewer

showtext if resulttype="

 this will show resultset"

the result set in a text

viewer rather than in a

grid which is default

Is only valid in combination with mode="execute

"

DbVisualizer 9.2 Users Guide

Page of 380 428

Attribute Value (bold = default) Description

script

if the action produced a

result according to the

resulttype, copy it to the

SQL Commander

hideif There may be situations when an action should

be dropped due to a condition. The hideif

attribute is used to express a condition which is

evaluated when the list of actions is created.

Example: hideif="#dataMap.get('actionlevel')

neq 'toplevel'"

resetcatalogs true/false Setting this attribute to true will reset any cached

databases for the actual database connection.

Useful when for example the action create,

rename or delete a database

resetschemas true/false Setting this attribute to true will reset any cached

schemas for the actual database connection.

Useful when for example the action create,

rename or delete a schema

supportsmultipleobjects true/false An action support processing multiple objects if

the style attribute for all input elements is one of:

check

list

radio

separator

read-only text

The attribute supportsmultipleobjects="true"

is used to disable multi object processing even if

the previous criteria is satisfied

class Used to specify a custom Java class used as the

action

classargs Used to pass arguments to a custom action

doclink Relative HTML link to the related chapter in the

users guide

DbVisualizer 9.2 Users Guide

Page of 381 428

Attribute Value (bold = default) Description

action drop drop is useful when extending another database

profile to remove the Action

order-before Specifies the order of this Action among a

collection of Action elements located at the same

level. It can either be an index starting at 0 (first)

or a node type. Ex. will order-before="View"

order this Action before Action elements defined

by the attributetype="View"

order-after Specifies the order of this Action among a

collection of Action elements located at the same

level. It can either be an index starting at 0 (first)

or a node type. Ex. will order-after="View"

order this Action after Action elements defined by

the attributetype="View"

XML element - Input
An Input element specifies the characteristics of a field component in the actions dialog. The attribute is label

recommended and is presented to the left of input field. If a label is not specified, the input field will occupy the

complete width of the action dialog. All input fields are editable by default. The attribute is required for name

editable fields and should specify the name of the variable in which the user input is stored.

Attribute Value (bold =

default)

Description

label The label for the input component

name For editable input this should be the name of the variable holding the value

specified by the user

tip Message displayed when hovering over the component

editable true/false Enables or disables editing of the component

linebreak true/false If set to true, no line break will be made after the input component. This is

useful when for example having multiple elements <Input style="check">

in a single row

style list, radio, , text

check, password,

number, text-editor,

grid, separator

The style of the input element. See following sections for more details

DbVisualizer 9.2 Users Guide

Page of 382 428

Attribute Value (bold =

default)

Description

hideif There may be situations when an element should be dropped due to aInput

condition. The hideif attribute is used to express a condition which is

evaluated when the action is initialized. Example: hideif="#dataMap.get('

actionlevel') neq 'toplevel'"

This is a minimal definition of an input field. It will show a field control labeled Size.read-only text

<Input label="Size" editable="false"/>

If the input field is changed to be , the attribute must be used to specify the identifier for the editable name

.variable name

<Input label=Size" editable="true" name="theSize"/>

Any input element may contain the attribute. It is used to briefly document the purpose of the input field and tip

is displayed as a tooltip when the user hover the mouse pointer over it.

<Input label=Size" editable="true" name="theSize" tip="Please enter the size of the new xxx"/>

The attribute is useful to limit what input fields should appear for an action. The condition specified in the hideif

hideif attribute have the same syntax as described in the <SetVar> section. Example:

<Input label="Unit" hideif="#dataMap.get('actionlevel') neq 'toplevel'">

Input fields can be aligned on a single row with the attribute. The default behavior is that every input linebreak

field is displayed on a single row. Use the attribute to define that the next input field will be linebreak="false"

arranged on the same line. To re-start the automatic line breaking feature you must use the linebreak="true"

attribute.

<Input name="size" label="Size" style="number" linebreak="false">

 <Default>10</Default>

</Input>

<Input name="unit" label="Unit" style="list" linebreak="true">

 <Labels>KB|MB</Labels>

 <Values>K|M</Values>

 <Default>M</Default>

</Input>

DbVisualizer 9.2 Users Guide

Page of 383 428

The previous example show the use of the linebreak attribute. The number field and the list will Size Unit

appear in the same row.

Specifying the as a result from an SQL statement is a trivial task:default value

<Input label=Size" editable="true" name="theSize">

 <Default>

 <Command>

 <SQL>

select size from systables where tablename = '${objectname}'

 </SQL>

 </Command>

 </Default>

</Input>

The definition above will execute a statement, it will automatically pick the value in the first row's Default SQL

first column and present it as the default value for the input component. SQL may be specified in the Default

element for all styles while SQL in and the elements are styles. In Values Labels valid only for list and radio

some rare situations it may not be possible to express a SQL statement that will return a single column that

should be displayed for Values, Labels and Default. An example is when data is collected via a stored procedure

. To solve this problem specify the attribute. Its value must be one of the actual or column column name

:column index

<Input label=Size" editable="true" name="theSize">

 <Default column="2">

 <Command idref="getSize">

 <Input name"objectname" value="${objectname}"/>

 </Command>

 </Default>

</Input>

or by column name:

<Input label=Size" editable="true" name="theSize">

 <Default column="THE_SIZE>

 <Command idref="getSize">

 <Input name"objectname" value="${objectname}"/>

 </Command>

 </Default>

</Input>

An alternative to embedding the SQL in the element body, as in one of the previous examples, is to refer to a

 via the standard attribute:command (see page 339) idref

<Input label=Size" editable="true" name="theSize">

DbVisualizer 9.2 Users Guide

Page of 384 428

 <Default>

 <Command idref="getSize">

 <Input name"objectname" value="${objectname}"/>

 </Command>

 </Default>

</Input>

Instead of having duplicated SQLs in multiple actions, consider using elements <Command idref="xxx">

instead.

Referring commands in actions via the idref attribute is recommended when the same SQL is used in

several actions. Use Input elements for the Command to pass parameters to the command.

The following sections presents the that can be used in the Input element.supported styles

Style - text (single line)

The style is used to present single-line data in a text field.text

<Input label="Enter your userid" name="userid" style="text">

 <Default>agneta</Default>

</Input>

The optional element is used to define a default value for the field. Variables, static text and Default

Command elements can be used to define the default value.

A text input is editable by default. To make it read only specify editable="false"

Style - text-editor (multi line)

A field is the same as the text style except that it presents a multi-line field.text-editor

<Input label="Description" name="desc" style="text-editor" editable="true" args="height=50"/>

The args="height=50" attribute define the height (in DLU) for the text-editor. The default height is 30 DLU's.

Style - number

A style is the same as text except that it only accept number values.number

<Input label="Size" name="size" style="number" editable="true"/>

Style - password

A field is the same as text except that it masks the value as ***.password

DbVisualizer 9.2 Users Guide

Page of 385 428

<Input label="Password" name="pw" style="password" editable="true"/>

Style - list (large number of choices)

The style displays a list of choices in a drop-down component. The list can be editable, meaning that the list

field showing the selection may be editable by the user. Here is a sample XML for the list style.

<Input label="Select index type" name="type" style="list">

 <Values>Pizza|Pasta|Burger</Values>

 <Default>Pasta</Default>

</Input>

The element should, for static entries, list all choices separated by a character. A DefaultValues vertical bar (|)

value can either list the name of the default choice or the index number (first choice starts at 0). In the example

above, setting Default to would set Burger to the default selection.{2}

It is also possible to use the element. If present, this should list all choices as they will appear in the Labels

actions dialog. Consider the following example and the labels shown to the user, while in this case Values

should list the choices that will go into the final SQL via the variable.

<Input label="Select index type" name="type" style="list">

 <Values>Pizza|Pasta|Burger</Values>

 <Labels>Pizza the French style|Pasta Bolognese|Texas Burger</Labels>

 <Default>Pasta</Default>

</Input>

If the users selects then the value for variable type will be .Texas Burger Burger

The following show how to use SQL to feed the list of values:

<Input label="New Database" name="newCatalog" style="list">

 <Values>

 <Command>

 <SQL>

 <![CDATA[

show databases

]]>

 </SQL>

 </Command>

 </Values>

 <Default>${catalog}</Default>

</Input>

Here a element is specified as a sub element to . The result of the SQL willCommand Values show databases

be presented in the list component.

DbVisualizer 9.2 Users Guide

Page of 386 428

To make the list editable, specify the attribute .editable="true"

Style - radio (limited number of choices)

The style display a list of choices organized as button components. The only difference between the radio radio

and list styles are:

All choices for a radio style are displayed on the screen (better overview of choices but suitable only for a

limited number of choices)

The attribute can be specified for radio style to present the radio choices verticallyargs="vertical"

See the style for complete capabilities of the radio style.list

Style - check (true/false, on/off, selected/unselected)

The style is suitable for , , types of input. Its checked state indicates that the check yes/no true/false here/there

 for the input will be set in the final variable. If the check box is unchecked, the variable value is blank.Value

<Input label="Cascade Constraints" name="cascade" style="check">

 <Values>compact</Values>

</Input>

This will create a check component with the label Cascade Constraints

Checking the check box will set the value of the variable identified by name (cascade) to the value of

, which is Value compact

If the check box is unchecked, the variable value will be blank

Style - separator (visual divider between input controls)

The style is not really an input element but is used to visually divide input components in the in the separator

action dialog. If the attribute is specified, it will be presented to the left of the separator line. If no label is label

specified, only the separator is displayed.

<Input label="Parameters" style="separator"/>

The separator is a useful substitute for the standard label presented to the left of every input field. Here is a

sample:

DbVisualizer 9.2 Users Guide

Page of 387 428

The figure shows the use of separators and two fields that extend to the full width of the action dialog. The

separators for and are here used as alternatives to labels for the fields below them.Parameters Source

Style - grid (configurable multi row/columns input)

The input style is presented as a grid with user controls to , and rows. The columns that grid add remove move

should appear in the grid are defined by using any of the primitive styles: , , , , text number password check list

and . The grid style is useful for data that allows the user to define multiple entries. Examples are, defining radio

columns that should appear in a table index, setup data files for a tablespace or databank.

This example show a grid style definition that will ask the user for parameters that will be part of a create

procedure action.

<Input name="parameters" style="grid">

 <Arg name="output" value="${direction} ${name} ${type}${_default}"/>

 <Arg name="newline" value=", "/>

DbVisualizer 9.2 Users Guide

Page of 388 428

 <Input name="name" label="Name" style="text">

 <Default>parm</Default>

 </Input>

 <Input name="direction" label="Direction" style="list">

 <Values>IN|INOUT|OUT</Values>

 <Default>IN</Default>

 </Input>

 <Input name="type" label="Type" style="text">

 <Default>nvarchar(20)</Default>

 </Input>

</Input>

Here is the result:

The sub elements for the grid style is different from the other input styles as it accepts nested elements. Input

These input styles define what columns should appear in the grid and the first input style will appear to the

leftmost and the last in the rightmost column.

DbVisualizer 9.2 Users Guide

Page of 389 428

This example doesn't specify the label attribute as we want the grid to extend the full width of the actions dialog.

The grid style use the elements to customize the appearance and function of the field. The following Arg

arguments are handled by the grid style:

output

Defines the output format for each row in the grid. The value may contain variables and static text. To

create conditional output check the element belowSetVar

newline

Defines the static text that should separate every row in the grid. A "\n" somewhere in the value will be

converted to a newline sequence in the final output

rowprefix

Specifies any prefix for every row in the grid

rowsuffix

Specifies any suffix for every row in the grid

The resulting parameter list is created automatically by the control and is available in the variable name

specified in the example to be parameters.

The element in the context of a grid style is used to process the data that will appear as defined by the SetVar <

 element. It is used to process the data for every row in the grid. Let's say that the output Arg name="output">

must contain the word if the value in a column named is entered. is used to handle " default " Default SetVar

this:

<SetVar name="_default" value='#default.equals("") ? "" : " default " + #default'/>

The input value is here evaluated and if it is not empty the text s prefixed to the value of the#default " default "

#default value. The result is stored in the variable which is also refered in the output argument above._default

XML element - SetVar
The element is used to do conditional processing and create new variables based on the content of SetVar

other variables or static text.

Consider an SQL statement for creating new users in the database:

create user 'user' identified by 'password'

In this case it is quite easy to map the user field to an element for the action since it is a required field. Input

The question arise for password which is optional. The clause should only be part of the final SQL identified by

if the password is entered by the user. The solution for this scenario is to use the element. Here is the SetVar

complete action definition:

<Action id="mydb-user-create" label="Create User" reload="true" icon="add">

 <Input label="Userid" name="userid" style="text"/>

DbVisualizer 9.2 Users Guide

Page of 390 428

 <Input label="Password" name="password" style="password"/>

 <SetVar name="_password" value='#password.equals("") ? "" : " identified by \"" + #password + "\

""'/>

 <Command>

 <SQL>

 <![CDATA[

create user ${userid} ${_password}

]]>

 </SQL>

 </Command>

</Action>

The SetVar element accepts three attributes:

Attribute Description

name The name of the new variable

value Should contain the expression that will be evaluated. The expression is based on the OGNL (http://

 toolkit. This is an expression library that mimics most of commons.apache.org/proper/commons-ognl/)

what is being supported by Java. Variables are referenced as #variableName

action This attribute is optional and can have any of the following values:

show - default and indicates that the variable (and its value will appear in node-form

viewers)

hide - the variable will not display in node-form viewers

drop - the SetVar element is not evaluated when actions is being processed

runwheninit - runs the SetVar only during initialization of the action (before window is

displayed)

The expression in the example above checks whether the password variable is empty. If it is empty, a blank

value is being assigned to the variable. If it is not empty, the value for will be set to _password _password

 .identified by theEnteredPassword

The SQL in the Command element now refer the new variable instead of the original ${_password} ${

.password}

It is recommended that variables produced via SetVar elements are prefixed with an underline (_) to

highlight were they come from.

http://commons.apache.org/proper/commons-ognl/
http://commons.apache.org/proper/commons-ognl/
http://commons.apache.org/proper/commons-ognl/

DbVisualizer 9.2 Users Guide

Page of 391 428

XML element - Confirm
The element is displayed to the user when a request to Execute the action is made. If there are only Confirm

read-only input fields in the action, this message is displayed in the body of the action dialog. Otherwise the

message is displayed in a confirmation dialog.

<Confirm>Really drop table ${table}?</Confirm>

Note that the message text can be composed of HTML tags such as , <i>,
, etc.

XML element - Result
The element is optional and if specified, it is shown in a dialog after successful execution.Result

Result elements are currently not displayed in DbVisualizer. It is however recommend that you specify

these as they will most likely appear in some way or another in a future version. If you want to test the

appearance of Result elements then open the DBVIS-HOME/resources/dbvis-custom.xml file in a text

editor and make sure dbvis.showactionresult is set to true.

<Result>Table ${table} has been dropped!</Result>

The Result message will be displayed in a dialog after successful execution.

If the execution fails, a generic error dialog is displayed and the Result is not displayed.

XML element - Command
The element specifies the SQL code that is executed by the action.Command

 <Command>

 <SQL>

 <![CDATA[

drop table ${table} mode ${mode} including constraints ${includeconstraints}

]]>

 </SQL>

</Command>

For more information about the Command element check the sectionXML element - Commands (see page 339)

.

DbVisualizer 9.2 Users Guide

Page of 392 428

XML element - Message
The element can be used to specify a highlight message that will appear at the top of the action Message

window.

<Message>

 <![CDATA[

This action will be deprecated in a future version as it use database calls that has been

declared by the database vendor as extremely bad performing.

]]>

</Message>

You may use simple HTML tags in the message content.

Action showing just a message
There may be situations when an action should show a message in a simple dialog with just an OK button. One

scenario when this is useful is when a condition is evaluated for an action requiring certain DB privileges to run it

. If proper authorization is missing a message should be displayed.

This is accomplished by having a single element for the element. The following illustrates an Confirm Action

example:

<If test="#SUPERUSER">

 <Action id="vertica-table-analyze-workload" label="Analyze Workload For Table" resultaction="

show">

 <Input label="Schema" style="text" editable="false">

 <Default>${schema}</Default>

 </Input>

 <Input label="Table" style="text" editable="false">

 <Default>${objectname}</Default>

 </Input>

 <Command>

 <SQL>

 <![CDATA[SELECT analyze_workload('${schema}.${objectname}')]]></SQL>

 </Command>

 <Confirm>

 Really Analyze Workload on ${schema}.${objectname}?

 </Confirm>

 </Action>

</If>

<Else>

 <Action id="vertica-table-analyze-workload-INFO" label="Analyze Workload For Table">

 <Confirm>

 <![CDATA[

 This feature requires the super user authorization.

]]>

 </Confirm>

 </Action>

DbVisualizer 9.2 Users Guide

Page of 393 428

</Else>

22.5 Icons

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

22.5.1 Introduction

Icons related to functionality defined in a database profile are displayed in the database objects tree, actions and

object viewers. Icons are declared by mapping a logical name with the file name for the icon. For database

profiles provided with DbVisualizer, the attribute for and elements map the type="xxx" GroupNode DataNode

 with a matching icon file name. Icons are normally of minor interest until you decide to build your own xxx

database profile or extend an existing one.

The following show the use of the attribute for a element. A condition control what icon to use icon DataNode

based on the value of .getCatalogs.TABLE_CAT

 <DataNode type="Catalog" label="${getCatalogs.TABLE_CAT}"

 icon="#dataMap.get('getCatalogs.TABLE_CAT').equals('sales') ? 'salesIcon' :

 (#dataMap.get('getCatalogs.TABLE_CAT').equals('support') ? 'supportIcon' :

null)">

 </DataNode>

The following sections explain how icons are handled and what choices you have to add your own icons.

22.5.2 icons.prefs file

Icons are defined in a simple text file with each row in the format: . In DbVisualizer there isname=iconFileName

a icons.prefs file provided with the installation and it maps all icons used not only in database profiles but for all

features. Here is a sample of the icons.prefs file.

PhysicalStandby= server_certificate

Plan= FIX_execute_explain

PrimaryKey= key

Privileges= key

Procedure= gears

Procedures= gears

DbVisualizer 9.2 Users Guide

Page of 394 428

Process= cpu

Processes= cpu

Program= hat_green

Programs= hat_green

Properties= control_panel

PublicDatabaseLinks= FIX_public_link

PublicDatabaseLink= FIX_public_link

The first name is the logical name used in the database profile. For all object types such as , , Table Column

, and so on these names are defined in the icons.prefs file. For non object types icons are named View Source

with the name the icon represents such as , , , and so on. The value for each logical name cut copy paste open

is the file name without the extension .png.

The object type may refer grouping objects () such as , , and GroupNode Tables Views Procedures

specific a objects () such as , , . The general recommendation is to DataNode Table View Procedure

name the object type for a GroupNode in a plural form and in singular form for DataNode objects. The

icon representing for example and is in most cases the same, still there must be two Tables Table

definitions in the icons.prefs file.

22.5.3 Icons Search Path

The database profile search path defined in Tool Properties / General / Database Connection / Database

 not only define what directories are searched for profiles but also icons. These are the default folders Profile

searched:

${dbvis.prefsdir}/ext/profiles

${dbvis.home}/resources/profiles

${dbvis.prefsdir} is replaced with the setting directory for DbVisualizer on the platform being used. On

Windows this is while is the installation directory for DbVisualizer. If C:\Users\<user>\.dbvis ${dbvis.home}

there is a icons.prefs file available in the searched directories the actual icon files bust be available in the

 and sub directories such as images/16x16 images/24x24 ${dbvis.prefsdir}/ext/profiles/images/

. The 16x16 directory should contain a 16 by 16 sized icon and the 24x24 a 24 by 24 sized icon.16x16

This is an example of the file:${dbvis.prefsdir}/ext/profiles/icons.prefs

sample-schema-dict=dict

The actual icon represented by the file name is located in:dict

DbVisualizer 9.2 Users Guide

Page of 395 428

1.

2.

${dbvis.prefsdir}/ext/profiles/images/16x16/dict.png

${dbvis.prefsdir}/ext/profiles/images/24x24/dict.png

22.6 Conditional Processing

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

Introduction (see page 395)

Conditional processing when database connection is established (see page 396)

Conditional processing during command execution (see page 397)

22.6.1 Introduction

Conditional processing simply means that a profile can adjust its content based on certain conditions. A few

examples:

Which version of the database is being accessed

The format of the database URL

The client environment i.e Java version, vendor, etc.

User properties

Database connection properties

Conditional processing is especially useful when adapting the profile for different versions of the database (and/

or JDBC driver). Another use is to replace generic error messages with more user friendly messages.

If you have some programming skills conditions are expressed using , and statements.if else if else

There are two phases when conditions are processed:

Conditional processing when database connection is established

If, and elements can be specified almost everywhere in the profileElseIf Else

Conditional processing during command execution

The element is used to define a message that will appear in DbVisualizer if a command fails. OnError

Conditions are used to control what message should appear

DbVisualizer uses the attribute to determine which elements should be executed in which of the two type If

phases. If this attribute is set to the value , it will be processed in the second phase. If it is not specified, runtime

it will be processed in the first phase.

DbVisualizer 9.2 Users Guide

Page of 396 428

22.6.2 Conditional processing when database connection is

established

The following example shows the use of conditions that are processed during connect of the database

connection.

<Command id="sybase-ase.getLogins">

 <If test="#DatabaseMetaData.getDatabaseMajorVersion() lte 8">

 <SQL>

 <![CDATA[

select name from master.dbo.syslogins

]]>

 </SQL>

 </If>

 <ElseIf test="#DatabaseMetaData.getDatabaseMajorVersion() eq 9">

 <SQL>

 <![CDATA[

select name, suid from master.dbo.syslogins

]]>

 </SQL>

 </ElseIf>

 <Else>

 <SQL>

 <![CDATA[

select name, suid, dbname from master.dbo.syslogins

]]>

 </SQL>

 </Else>

</Command>

The above means that if the major version of the database being accessed is less then or equal to 8, the first

SQL is used. If the version is equal to 9, the second SQL is used, and the last SQL is used for all other versions.

The test attribute may contain conditions that are ANDed or ORed. Conditions can contain multiple evaluations,

combined using parenthesis. The If, ElseIf and Else elements may be placed anywhere in the XML file.

Here is another example that controls whether certain nodes will appear in the database objects tree or not.

<!-- Getting Table Engines was added in MySQL 4.1 -->

<If test="(#dm.getDatabaseMajorVersion() eq 4 and #dm.getDatabaseMinorVersion() gte 1)

 or #dm.getDatabaseMajorVersion() gte 5">

 <GroupNode type="TableEngines" label="Table Engines" isLeaf="true"/>

 <!-- "Errors" was added in MySQL 5 -->

 <If test="#dm.getDatabaseMajorVersion() gte 5">

 <GroupNode type="Errors" label="Errors" isLeaf="true"/>

 </If>

</If>

<Commands>

DbVisualizer 9.2 Users Guide

Page of 397 428

 <OnError>

 <!-- The ORA-942 error means "the table or view doesn't exist" -->

 <!-- It is catched here since these errors typically indicates -->

 <!-- that the user don't have privileges to access the SYS and/or -->

 <!-- V$ tables. -->

 <If test="#result.getErrorCode() eq 942" context="runtime">

 <Message>

 <![CDATA[

You don't have the required privileges to view this object.

]]>

 </Message>

 </If>

 <ElseIf test="#result.getErrorCode() eq 17008" context="runtime">

 <Message>

 <![CDATA[

Your connection with the database server has been interrupted!

Please reconnect to re-establish the connection.

]]>

 </Message>

 </ElseIf>

 </OnError>

 ...

</Commands>

As you can see, this example contains uses of .nested If

22.6.3 Conditional processing during command execution

Using conditional processing to evaluate any errors from a Command may be useful to rephrase error

messages to be more user friendly.

<Commands>

 <OnError>

 <!-- The ORA-942 error means "the table or view doesn't exist" -->

 <!-- It is catched here since these errors typically indicates -->

 <!-- that the user don't have privileges to access the SYS and/or -->

 <!-- V$ tables. -->

 <If test="#result.getErrorCode() eq 942" context="runtime">

 <Message>

 <![CDATA[

You don't have the required privileges to view this object.

]]>

 </Message>

 </If>

 <ElseIf test="#result.getErrorCode() eq 17008" context="runtime">

 <Message>

 <![CDATA[

Your connection with the database server has been interrupted!

Please reconnect to re-establish the connection.

]]>

DbVisualizer 9.2 Users Guide

Page of 398 428

 </Message>

 </ElseIf>

 </OnError>

 ...

</Commands>

The element can be used in and elements. If used in element, its OnError Commands Command Commands

conditions are processed for all its commands. If it's part of a specific Command, it is processed only for that

command.

22.7 Database Profile Utilities

Only in DbVisualizer Pro

This document and the Database Profile Framework in general is appropriate only when using the

licensed DbVisualizer Pro edition.

In the list in there is a right-click menu with various commands to Database Profiles Connection Properties

process the database profile and list of profiles. These

commands are useful while developing a database profile. Read the following sections for more details about

each command.

Analyze Database Profile (see page 398)

Show All Type and Icon Attributes (see page 399)

Show Available Icons (see page 400)

Export Merged Profile (see page 400)

Configure Search Path (see page 400)

Reload Database Profiles List (see page 400)

22.7.1 Analyze Database Profile

This command verify the loaded database profile and perform various consistency checks and may report:

Check

GroupNode and DataNode elements with no matching ObjectView (by "type" attribute)

ObjectView elements with no matching GroupNode or DataNode (by "type" attribute)

ActionGroup elements with no matching GroupNode or DataNode (by "type" attribute)

DbVisualizer 9.2 Users Guide

Page of 399 428

Check

DataView elements located in the same ObjectView having same "label" attribute

No matching icon for these elements (by the "type" or "icon" attributes)

22.7.2 Show All Type and Icon Attributes

This command examine the loaded profile and report all used icons (logical name) as referenced by the object

type and specific icon attributes. The following is an example doing running this command with the MySQL

profile loaded.

These are all "type" and "icon" references in the profile:

add

catalog

column

columns

data

databases

dba

edit

errors

export

function

functions

import

index

indexes

info

login

navigator

primarykey

procedure

procedures

process

processes

references

remove

rename

role

roles

rowcount

rowid

schema

scriptobject

source

sourceeditor

status

table

DbVisualizer 9.2 Users Guide

Page of 400 428

tableengine

tableengines

tableprivileges

tables

trigger

triggers

users

variables

view

views

22.7.3 Show Available Icons

This will show a window with all available icons, their name, icon file name and an indicator if the icon is used in

the loaded database profile.

22.7.4 Export Merged Profile

This will export the currently loaded profile. If the profile has been merged using the extend (see page 335)

attribute the exported profile file is the complete and processed profile.

22.7.5 Configure Search Path

This will open pane used to configure Tool Properties / General / Database Connection / Database Profile

the search path for database profile loading.

22.7.6 Reload Database Profiles List

This will reload the list of database profiles in case a new profile has been added (or renamed) since last launch

of DbVisualizer.

DbVisualizer 9.2 Users Guide

Page of 401 428

1.

2.

3.

4.

5.

6.

23 Troubleshooting
Even though we make our very best to ensure the quality of DbVisualizer, you may run into problems of different

kinds. The runtime environment for DbVisualizer is rather complicated when it comes to tracking the source of a

problem, since it's not only DbVisualizer that may cause the problem but also the JDBC driver, or even the

database engine.

There are a few things that you can try before reporting a problem, depending on the nature of the problem:

Make sure you are using the latest version of available for your platform (Java Java (http://www.java.com/)

6 or later),

Make sure you are using a of the JDBC driver that we'veversion (http://www.dbvis.com/doc/database-drivers/)

tested DbVisualizer with, or a later, production quality version,

Read the DbVisualizer ,FAQ (http://confluence.dbvis.com/display/FAQ)

Check the online ,Forums (http://www.dbvis.com/forum/)

Read the DbVisualizer ,Users Guide (http://confluence.dbvis.com/display/UG/Users+Guide)

... the last resort is to post a question via the or send an email to problem report form (see page 406)

. (Note that we generally love detailed reports as well as support@dbvis.com (mailto:support@dbvis.com)

screenshots when possible)

23.1 Debugging DbVisualizer

The is useful to see what is going on in DbVisualizer and the JDBC driver(s). The Tools->Debug Window

checks at the top control what parts of DbVisualizer should be debugged. The Debug JDBC Drivers option will

enable debug of the current JDBC driver. Note that the amount of output is determined by the JDBC driver.

http://www.java.com/
http://www.dbvis.com/doc/database-drivers/
http://confluence.dbvis.com/display/FAQ
http://www.dbvis.com/forum/
http://confluence.dbvis.com/display/UG/Users+Guide

DbVisualizer 9.2 Users Guide

Page of 402 428

The and buttons in the toolbar prepare the log with information about the DbVisualizer version you Save Copy

are using and the connected database connections.

The log is automatically truncated to preserve memory when the log destination is set to . The Debug Window

 and destinations have no such limitation.Console File

23.2 Fixing Connection Issues

There may be many reasons for why you cannot connect to a database, but some of the most common are:

Incorrect values for the or fields in the tab for the Database Server Database Port Object View

connection,

TCP/IP access is not enabled in the database server,

A firewall between the client and the database server blocks connections to the database port,

A syntax error in a manually entered JDBC URL,

The user account is not authorized to connect from the client where you run DbVisualizer,

Native libraries for a JDBC driver are not found.

The first three problems usually results in a somewhat cryptic message about I/O errors or a time-out. You can

use the button to make sure that the a TCP/IP network connection can be established to the Ping Server

specified server and port. If this test fails, please ask your system or database administrator for help.

DbVisualizer 9.2 Users Guide

Page of 403 428

JDBC syntax errors typically result in one of two error messages:

"The selected Driver cannot handle the specified Database URL. The most common reason for this error

is that the database URL contains a syntax error preventing the driver from accepting it. The error also

occurs when trying to connect to a database with the wrong driver. Correct this and try again."

"java.sql.SQLException: Io exception: Invalid number format for port number Io exception: Invalid number

format for port number"

In both cases, we recommend using the settings format instead of the format for theServer Info Database URL

connection, and let DbVisualizer build a valid JDBC URL for you. If you must enter a JDBC URL manually, make

sure that you replace possible placeholders enclosed with "<" and ">" in a template you have copied, such as <

1521>, and look for other syntax errors. Also verify that the correctly.JDBC driver is installed (see page 409)

Authorization problems are usually described by more straight forward messages. Ask you database

administrator to help you get it resolved.

If you get a message about native libraries not being found, e.g. " no ocijdbc11 in java.library.path" or similar, it

is because you have not installed these in a location where DbVisualizer can read them. Unless you have a very

good reason for using a JDBC driver that requires native code, we recommend that you use a pure Java JDBC

driver (a Type 4 driver) instead, like the "Oracle Thin" driver for Oracle.

If none of this helps, please contact us using the form. Most of the information we can Help->Contact Support

gather about the problem is typically already filled in, but please add any additional details that may help us

figure out what is wrong.

23.3 Handling Dropped Connections

All tasks that may potentially take a bit of time to perform or that may not finish at all because a database

connection has dropped are executed in the background so that you can still do other things. You can see that

background tasks are running by looking at an indicator icon in the status bar.

If there are tasks running, the indicator icon is animated, showing a spinning pattern.

You can see exactly which tasks are running by clicking on the icon. This opens the window.Task Manager

DbVisualizer 9.2 Users Guide

Page of 404 428

You can abort a long running task by clicking the button next to the progress bar.Stop

If the task did not complete because the connection dropped, you also need to reconnect to the database. If this

happens frequently, you can enable to send a dummy SELECT Connection Keep-Alive (see page 294)

statements to the database occasionally to prevent time-outs.

23.4 Handling Memory Constraints

DbVisualizer has a fixed amount of memory available, and things may go bad if you load so much data that

you're getting close to this limit. The most common effect is that the GUI becomes very unresponsive or freezes

completely.

To minimize the risk of this happening, DbVisualizer keeps track of the memory usage when you load tables or

files and similar tasks that consume memory. If you're getting so close to the limit that problems are likely to

begin to show, all memory consuming background tasks are suspended and the High Memory Usage window

pops up.

DbVisualizer 9.2 Users Guide

Page of 405 428

All open tabs are listed along with an estimate for how much memory each tab uses. All background tasks are

also shown. You need to resolve the high memory usage problem before you can continue working with

DbVisualizer. Click on the red cross next to tabs that use lots of memory to close them and stop tasks that

consume memory.

When you have released enough memory to get below the critical level, the icon in the Continue button changes

to a green checkmark. Click it to close the window and continue to work.

If you often see this window, first consider using features that minimizes the memory usage, such as using the @

 command to and the command to run execute your script (see page 179) @export write query results to a file (

. As a last resort, you can increase the amount of memory DbVisualizer can use. Please see the see page 209)

 on out web site for how to do so.FAQ page (http://confluence.dbvis.com/pages/viewpage.action?pageId=3146118)

In rare cases, closing tabs and stopping tasks do not release enough memory to continue, possibly due to

memory leaks in the DbVisualizer code. If this happens, you can click the button. The heap Create Heap Dump

dump file is named and stored in the preferences folder, typically the folder in your home folder. heap.bin .dbvis

It may help us find memory leaks and fix them, so please send it to us with a description of what you were doing

http://confluence.dbvis.com/pages/viewpage.action?pageId=3146118

DbVisualizer 9.2 Users Guide

Page of 406 428

when you ran into this problem. The file can be huge, so please compress it (e.g. using the zip command)

before mailing it to us.

If you cannot release enough memory to continue, you can use the button to shut Shutdown DbVisualizer

down and start fresh.

23.5 Reporting Issues

You can use either the form or our forums and web contact forms to report problems Help->Contact Support

and ask for help. We recommend the former, as it gathers information about your settings and connections that

help us provide you with better analysis of the problem without having to get back to you and ask for additional

information.

If you encounter an error that causes an error alert dialog to pop up, please click the button to Report Problem

open the contact form with the details of the error filled in.

DbVisualizer 9.2 Users Guide

Page of 407 428

23.6 Using special characters in passwords

Passwords entered for connections etc. can optionally be saved between sessions by DbVisualizer. Passwords

containing special characters such as can not be saved when the default encoding for passwords is used. More

specifically DbVisualizer only supports characters in the 8859-1 character set with the default encoding; other

characters are corrupted when saved.

To be able to save passwords containing any characters, you need to enter a Master Password. Please see the

section for more information.Setting a Master Password (see page 290)

DbVisualizer 9.2 Users Guide

Page of 408 428

24 Reference Material
Here you find details about areas that are not covered elsewhere.

24.1 GUI Command Line Arguments

As an alternative to start DbVisualizer via the menu items and icons created by the installer, you can also start

DbVisualizer from a shell (terminal) on all operating systems using the following scripts:

DbVisualizer GUI on Windows:

DBVIS-HOME\dbvisgui.bat

DbVisualizer GUI on Linux/UNIX:

DBVIS-HOME/dbvisgui.sh

DbVisualizer GUI on Mac OS X:

DbVisualizer.app/Contents/java/app/dbvisgui.sh

The scripts supports a number of command line arguments. These are also listed in the menu Help->About

choice, under the tab, in DbVisualizer.Command Line

Usage: dbvisgui [-connection <name>] [-userid <userid>] [-password <password>]

 [<filename>] [-encoding <encoding>]

 [-prefsdir <directory>]

 [-windowtitle <title>]

 [-help] [-version]

General Options:

 -connection <name> Database connection name (created with the GUI)

 -userid <userid> Userid to connect as

 -password <password> Password for userid

 <filename> SQL script file to load into editor

 -encoding <encoding> Encoding for the SQL script file

 -prefsdir <directory> Use an alternate user preferences directory

 -windowtitle <title> Additional window title

 -help Display this help

 -version Show version info

Please note that these scripts use the first Java version that is found in the PATH. The result may be

that a non supported Java version is used.

DbVisualizer 9.2 Users Guide

Page of 409 428

24.2 Installation Structure

The installer and launcher for DbVisualizer is based on the install4jTM product (http://www.install4j.com (http://

). The structure of the installation directory (referred as DBVIS-HOME throughout the Users www.install4j.com/)

Guide) contains the following. (The exact content may differ between platforms):

.install4j/

doc/

editor/

jdbc/

lib/

resources/

wrapper/

dbvis.vmoptions

dbvis.exe

README.txt

uninstall.exe

The file is used to start DbVisualizer. The remaining files and directories are only of interest if you dbvis.exe

need to do nonstandard customization. For information on how to increase the memory for the Java process that

runs DbVisualizer, and also on how to modify the Java version being used, please read the online FAQ (http://

 for the latest information.confluence.dbvis.com/display/FAQ)

24.3 Installing a JDBC Driver

DbVisualizer bundles JDBC drivers for most common databases, so typically you do not need to install a JDBC

driver.

What is a JDBC Driver? (see page 410)

Get the JDBC driver file(s) (see page 410)

Driver Manager (see page 411)

JDBC Driver Finder (see page 411)

Loading and Configuring Drivers Manually (see page 413)

Setup a JDBC driver (see page 415)

JDBC drivers that requires several JAR or ZIP files (see page 417)

The JDBC-ODBC bridge (see page 418)

Errors (why are some paths red?) (see page 418)

Several versions of the same driver (see page 419)

This page describes the way JDBC drivers are managed in DbVisualizer. If a JDBC driver for your database is

bundled with DbVisualizer, see Driver Info on the Supported Databases (http://www.dbvis.com/doc/database-drivers/

 page, you typically do not need to read this chapter.)

http://www.install4j.com/
http://www.install4j.com/
http://www.install4j.com/
http://confluence.dbvis.com/display/FAQ
http://confluence.dbvis.com/display/FAQ
http://confluence.dbvis.com/display/FAQ
http://www.dbvis.com/doc/database-drivers/
http://www.dbvis.com/doc/database-drivers/
http://www.dbvis.com/doc/database-drivers/

DbVisualizer 9.2 Users Guide

Page of 410 428

If, however, any of the these things apply to you, keep on reading:

want to learn how the Driver Manager in DbVisualizer works,

need to have several versions of the same JDBC driver loaded simultaneously,

need to add a Driver that does not exist in the list of default drivers .

24.3.1 What is a JDBC Driver?

DbVisualizer is a generic tool for administration and exploration of databases. DbVisualizer does not deal

directly with how to communicate with each database type. That job is done by a JDBC driver, which is a set of

Java classes. All JDBC drivers conform to the JDBC specification and its standardized Java programming

interfaces. This is what DbVisualizer relies on. A JDBC driver implements all details for how to communicate

with a specific database and database version, and there are drivers available from the database vendors

themselves as well as from third parties. To establish a connection to a database, DbVisualizer loads the driver

and then gets connected to the database through the driver.

It is also possible to obtain a database connection using the Java Naming and Directory Interface (JNDI). This

technique is widely used in enterprise infrastructures, such as application server systems. It does not replace

JDBC drivers but rather adds an alternative way to get a handle to an already established database connection.

To enable database "lookup's" using JNDI, an Initial Context implementation must be loaded into the

DbVisualizer Driver Manager. This context is then used to lookup a database connection.

The following sections describe the steps for installing a JDBC Driver, and also how to configure DbVisualizer to

use JNDI to obtain a database connection.

24.3.2 Get the JDBC driver file(s)

DbVisualizer comes bundled with all commonly used JDBC drivers that have licenses that allow for distribution

with a third party product. Currently, drivers for DB2, H2, JavaDB/Derby, Mimer SQL, MySQL, NuoDB, Oracle,

PostgreSQL, SQLite, Vertica as well the jTDS driver for SQL Server and Sybase, are included with DbVisualizer

. If you only need to connect to databases of these types, you can skip the rest of this chapter and jump straight

to the page, because by default, DbVisualizer configures all these driversCreating a Connection (see page 17)

automatically the first time you start DbVisualizer.

If you need to connect to a database that is not supported by a bundled JDBC driver, you must get a JDBC

driver that works with your database type and version. The following web page contains an up-to-date listing of

the database/driver combinations we have tested:

http://www.dbvis.com/doc/database-drivers/

http://www.dbvis.com/doc/database-drivers/

DbVisualizer 9.2 Users Guide

Page of 411 428

To find a JDBC driver for your database, go to the database vendor's website or search for the name of the

database plus the word .JDBC

(http://www.dbvis.com/doc/database-drivers/)

Download the driver to an appropriate directory. Make sure to read the installation instructions provided with the

driver. Some drivers are delivered in ZIP or JAR format but need to be unpacked to make the driver files visible

to the Driver Manager. The web page Databases and JDBC Drivers (http://www.dbvis.com/doc/database-drivers/)

describes where you can download some drivesr and also what additional steps may be needed to install and

load the driver in DbVisualizer.

Drivers are categorized into 4 types. We're not going to explain the differences here, just give you the

hint that the "type 4," aka "thin," drivers are the easiest to maintain, since they are pure Java drivers

and do not depend on any external DLL's or dynamic libraries. Even though DbVisualizer works with

any type of driver, we recommend that you get a type 4 driver if there is one for your database.

When you have downloaded the JDBC driver into a local folder (and unpacked it, if needed), you can go ahead

and create a database connection with the Connection Wizard, as described in the Creating a Connection (see

 page. You will then be asked to load the driver files when the wizard needs them. Alternatively, you page 17)

can move (or copy) the JDBC driver files to the DBVIS_HOME/jdbc folder, where they will be picked up and

loaded automatically by the the next time you start DbVisualizer.JDBC Driver Finder (see page 411)

24.3.3 Driver Manager

The in DbVisualizer is used to define the drivers that will be used to communicate with the Driver Manager

databases. You can manually locate the JDBC driver files and configure the driver, or you can use the JDBC

Driver Finder to do most of the work for you, either on demand or automatically.

JDBC Driver Finder
The is a very powerful part of the Driver Manager that automates most of the driver JDBC Driver Finder

management work. Given the folders where JDBC drivers are located, it loads and configures new drivers (if any

) every time you start DbVisualizer. You can configure the JDBC Driver Finder in , in Tools->Tools Properties

the category under the tab.Driver Manager General

http://www.dbvis.com/doc/database-drivers/
http://www.dbvis.com/doc/database-drivers/

DbVisualizer 9.2 Users Guide

Page of 412 428

Use the following properties to specify the finder behavior:

Property Description

Run

JDBC

Driver

Finder at

Startup

If enabled, the finder will run automatically every time you start DbVisualizer. If it finds any new

driver files, it will automatically load and configure them.

DbVisualizer 9.2 Users Guide

Page of 413 428

Property Description

Replace

Driver

Files

If enabled, the driver files are replaced for the matching driver even if the driver already has

proper driver files.

Display

When

New

Files

If enabled, the finder window pops-up if it finds any new files when you start DbVisualizer.

Otherwise the finder runs invisibly in the background.

Display

on Error

If enabled, the finder window pops up if it encounters any errors loading and configuring new

drivers. Otherwise it is silent about errors and you have to launch the to Tools->Driver Manager

see which drivers are not loaded successfully. Enabling this property is only meaningful if you

have disabled .Display When New Files

You can also specify the folders the JDBC Driver Finder will search. By default, it will search folders named jdbc

in the DbVisualizer installation directory () and the DbVisualizer preferences folder (${dbvis.home} ${

). These folder paths are shown under the list of .dbvis.prefsdir} Driver Finder Paths

Finally, you can specify regular expression patterns for filenames that the finder should ignore. This can be

useful if you need to store other files besides driver files in the designated folders.

If you let the JDBC Driver Finder load all drivers for you, all you need to do to install a new driver is to put the

driver files in one of the folders specified for the finder in Tool Properties and then restart DbVisualizer.

The Driver Finder is always activated when upgrading from an older DbVisualizer version.

Loading and Configuring Drivers Manually
You can also load and configure JDBC drivers manually using the Driver Manager. If you use JNDI to provide

access to the database, you must use this option, since the JDBC Driver Finder does not handle JNDI. Start the

Driver Manager dialog using the menu choice.Tools->Driver Manager

The left part of the driver manager dialog contains a list of driver names with a symbol indicating whether the

driver has been configured or not. The right part displays the driver configuration for the selected driver in terms

of the following:

Name

A driver name in the scope of DbVisualizer is a logical name for either a JDBC driver or an Initial Context

in JNDI. This is the name shown in the Connectiontab when selecting which driver to use for a Database

Connection

DbVisualizer 9.2 Users Guide

Page of 414 428

URL Format

The URL format specifies the pattern for the JDBC URL or a JNDI Lookup name. Its purpose is to assist

the user in the Connection tab when entering URL information or a lookup name. See Using Variables in

 for more about how you can make it really easy to create Database Connection Fields (see page 299)

Connections for this driver later on.

Driver Class

Defines the main class for the JDBC driver, used for connecting to the database.

Driver Version

Shows the version for a loaded driver.

Web Site

Link to the DbVisualizer web site, where you can get up-to-date information about how to download the

drivers for many databases.

Driver File Paths

Defines all paths to search for JDBC drivers or Initial Contexts when connecting to the database. The

Driver File Paths area is composed of two tabs: the paths in the tab are used for User Specified

dynamically loaded JDBC drivers or Initial Context classes, and the tab lists all paths System Classpath

that are part of the Java system class path.

The System Classpath tab is only of interest for the JDBC-ODBC driver.

DbVisualizer 9.2 Users Guide

Page of 415 428

Initially, the driver list contains a collection of default drivers. They are not fully configured, as the paths to

search for the classes need to be identified. You can edit the list, i.e., create, copy, remove and rename drivers.

A driver is ready to use once a driver class has been identified, which is indicated with a green check icon in the

list. Drivers that are not ready for use are shown without an icon, or with a red cross icon if an error has been

detected (such as a missing file) .

Setup a JDBC driver
The recommended way to setup a driver is to pick a matching driver name from the list and then simply load the

JAR, ZIP or directory that keeps the driver class(es). For instances, if you are going to load the JDBC driver for

, select the Oracle driver in the list . You can also create a new driver or copy an existing one.Oracle

Check the following online web page with the most current information about the tested databases and drivers:

DbVisualizer 9.2 Users Guide

Page of 416 428

http://www.dbvis.com/doc/database-drivers/

It lists which databases and drivers we have tested

Download links to JDBC drivers

Information about which files to load in the driver manager for each JDBC driver

Information about which Driver Class to choose

When you have selected the driver to configure, you need to load the driver files. Click the button to the Load

right of the paths tree to show the file chooser and load the driver JAR, ZIP or individual files.User Specified

A JDBC Driver implementation typically consists of several Java classes. If they are packaged in a JAR or a ZIP

file, you don't have to worry about the details; just select and load the JAR or ZIP file. For instance, in the

example above, use the ojdbc6.jar file.

If the driver classes are not packaged, it is important to select and load the root folder for the JDBC Driver. Java

classes are typically organized using a package name structure. Example:

oracle.jdbc.driver.OracleDriver

Each package part in the name above (separated by ".") is represented by a folder in the file system. The root

folder for the driver is the folder named by the first part, i.e., the directory in this example. The class files oracle

are stored in the sub folder. When the driver classes are located in a folder structure like this, oracle/jdbc/driver

you must select and load the root folder, so that the Driver Manager gets the complete package structure.

http://www.dbvis.com/doc/database-drivers/

DbVisualizer 9.2 Users Guide

Page of 417 428

1.

2.

When a connection is established in the Connection tab, DbVisualizer searches the selected drivers path tree's

in the following order:

User Specified

System Classpath

The paths are searched from the top of the tree, i.e., if there are several identical classes in, for example, the

dynamic tree, the topmost class will be used. Loading several paths containing different versions of the same

driver in one driver definition is not recommended, even though it works (if you do this, you must move the driver

you are going to use to the top of the tree). The preferred method for handling multiple versions of a driver is to

create several driver definitions.

When you load files in the User Specified paths list, DbVisualizer analyzes each file to find the classes that

represent main driver classes. Each such class is listed under the path where it was found in the User Specified

paths lists, and it is also added to the list in the Driver Settings area above. If there is more than Driver Class

one class in the list, make sure you select the correct Driver Class from the list. Consult the driver

documentation (or the page) for Databases and JDBC Drivers (http://www.dbvis.com/doc/database-drivers/)

information about which class to select.

JDBC drivers that requires several JAR or ZIP files
Some drivers depend on several ZIP or JAR files, or directories. One example is if you want XML support for an

Oracle database. In addition to the standard JAR file for the driver, you then also need to load two additional

JAR files. These are not JDBC driver files but adds functionality the driver needs to fully support XML.

Simply select all JARs at once and press in the file chooser dialog. The Driver Manager will then Open

automatically analyze each of the loaded files and present any JDBC driver classes or JNDI initial context

classes it finds.

http://www.dbvis.com/doc/database-drivers/

DbVisualizer 9.2 Users Guide

Page of 418 428

The JDBC-ODBC bridge
The JDBC-ODBC driver is bundled with most Java installations, but not all (e.g., it is not included with Java for

Max OS X). The JdbcOdbcDriver class is included in a JAR file that is commonly named , stored rt.jar

somewhere in the Java directory structure. DbVisualizer automatically identifies this JAR file in the System

Classpath tree. To locate the JdbcOdbcDriver, simply press the button to the right of the Find Drivers System

 tree. When it is found, make sure the is selected as the Driver Classpath sun.jdbc.odbc.JdbcOdbcDriver

Class in the Driver Settings area.

The JDBC-ODBC bridge driver is not intended for production use and is known to be limited and

unreliable. Use it only if there is no pure JDBC driver for your database.

Errors (why are some paths red?)
A path in red color indicates that the path is invalid. This may happen if the path has been removed or moved

after it was loaded into the driver manager. Simply remove the erroneous path and locate the correct one.

DbVisualizer 9.2 Users Guide

Page of 419 428

Several versions of the same driver
The Driver Manager supports loading and using several versions of the same driver concurrently. We

recommend that you create a unique driver definition per version of the driver and name the driver definitions

properly, e.g., , , etc.Oracle 9.2.0.1 Oracle 10.2.1.0.1

24.4 Setting Up a JNDI Connection

Initial Context classes are needed to get a handle to a database connection that is registered with a JNDI lookup

service. In DbVisualizer, these context classes are similar to JDBC driver classes in that an Initial Context

implementation for a specific environment is required.

Remember that the appropriate JDBC driver classes must be loaded into the Driver Manager even if

the database connection is obtained using JNDI.

To load Initial Context classes into the Driver Manager, simply follow the steps outlined for installing a custom

. The difference is that you will load paths containing Initial Context classes instead JDBC driver (see page 409)

of JDBC drivers. When you load a path, DbVisualizer locates all Initial Context classes in the path and lists them

in the User Specified paths list.

DbVisualizer 9.2 Users Guide

Page of 420 428

When you create a database connection using a JNDI Lookup driver, the Properties sub tab in the connection's

Object View tab always contains then same driver properties.

DbVisualizer 9.2 Users Guide

Page of 421 428

The list of options for JNDI lookup is determined by the constants in the class. To javax.naming.Context

change a value, just modify the value of the parameter. The first column in the list indicates whether the property

has been modified or not, and so, whether DbVisualizer will pass that parameter and value onto the driver at

connect time.

New parameters can be added using the buttons to the right of the list. Be aware that additional parameters do

not necessarily mean that the InitialContext class will do anything with them.

24.5 Special Properties

DbVisualizer utilizes a few special properties that you can use to modify characteristics of the application. These

properties are available in the file.DBVIS-HOME/resources/dbvis-custom.prefs

Property Description

dbvis.-AutoSaveRunInterval=30 The number of seconds between auto-saving open SQL editors.

dbvis.disabledataedit=false

DbVisualizer 9.2 Users Guide

Page of 422 428

Property Description

Specifies if table data editing should be completely disabled, i.e. the form

and inline editors. Note: This has an effect only when used with a

licensed edition.

dbvis.driver.ignore.dir=lib:

resources:.install4j

Specify directories from DBVIS-HOME that should not be listed in the

Driver Manager "System Classpath" list. Directories are separated with ":"

.

Accepted values: one or several directory names starting from

DBVIS-HOME.

dbvis.grid.encode=false Specifies if encoding of data in result set grids will be performed or not. If

set to true then make sure the dbvis.grid.fromEncode and/or

dbvis.grid.toEncode are also set.

dbvis.grid.fromEncode=

ISO8859_1

Encoding used when translating text data that is fetched from the

database

dbvis.grid.toEncode=GBK Encoding used when translating data that will appear in the result set grid

dbvis.removepartialresultsets=

false

Defines whether the result set(s) should be removed when interrupting an

ongoing execution in the SQL Commander.

dbvis.savedatacolumns=false Column layout changes such as reordering and/or visibility are saved for

all grids in the Objects Views *except* for the "Data" grid. This property

can be used to also include the layout in the "Data" grid. Note: This will

result in DbVisualizer saving the layout for each table that is displayed in

the Data grid = huge XML file...

dbvis.showactionresult=false This defines whether the result for all actions should be displayed or only

failures (default).

dbvis.sqlwarning.maxrows=

5000

Defines the number of SQL Warning rows that should be processed

before truncating.

dbvis.usegetobject=false Specifies if the generic ResultSet.getObject() method in JDBC will be

used in favor of the data type specific get methods or not. Default is false.

dbvis.usestandardgridfit=false Enable this property and DbVisualizer will use an accurate but slow

method to automatically resize grid columns. "Accurate" since it does a

real calculation of the columns width. If leaving this property disabled then

column widths are determined much faster but depending on what grid

font is used some columns may be truncated with "...". This property has

an effect only if Tool Properties->Grid->Auto Resize Column Widths is

enabled

DbVisualizer 9.2 Users Guide

Page of 423 428

Property Description

dbvis.-ConnectionTestTimeout

=20

The timeout in seconds for the "Ping Server" feature.

dbvis.<database>.

IgnoreMaxRowsForNonSELECT

=true

Ignore the Max Rows setting for statements other than SELECT. MS SQL

Server applies Max Rows also to DELETE, INSERT and UPDATE (upto

and including SQL Server 2008).

dbvis.<database>.-

RemoveNewLineChars=false

Backward compatibility setting used to specify that the SQL command will

be trimmed of all whitespaces, tabs and newlines just before it is

executed by the DB server.

locale=en,us Use this to specify an alternate Locale

You rarely need to modify these properties, as the default values are sufficient for most usage. Also

note that these properties may change in future versions of DbVisualizer. Some are also experimental

and may be removed or instead introduced in the DbVisualizer GUI.

DbVisualizer 9.2 Users Guide

Page of 424 428

Index

B
BLOB , 104 109

edit 104

export 109

C
chart , 237 245

export 245

client side command 217

CLOB , 104 109

edit 104

export 109

command line interface 311

comment 216

send to database with statement 216

connection , , , , , , , , 17 282 286 288 289 290 294 297 298

authentication options , 289 298

Windows SSO 298

configuration 282

copy 286

create 17

master password 290

over SSH tunnel 294

remove 288

using Oracle TNS names 297

Connection Keep-Alive 294

connection 294

D
database profile , , 318 323 324

create 323

extend 324

DbVisualizer 9.2 Users Guide

Page of 425 428

E
editions , , 15 15 16

Free 15

Pro , 15 16

evaluate 15

install license 16

F
function , , , , 137 142 144 148 149

create 137

edit 142

execute 144

export 148

scripting 149

G
graph 30

print 30

grid , 30 258

compare 258

print 30

I
index 78

create 78

J
JDBC driver 409

install 409

K
keyboard shortcut 44

DbVisualizer 9.2 Users Guide

Page of 426 428

L
license 16

install 16

Log tab , 207 208

select corresponding statement 207

write to 208

P
parameter marker 228

permissions , 132 215

SQL Commander 215

table data editing 132

procedure , , , , 139 142 144 148 149

create 139

edit 142

execute 144

export 148

scripting 149

Q
Query Builder , , , , 191 193 195 196 201

add table 191

join tables 193

load statement 201

remove table/join 195

specify details 196

R
result set , , , , , , 217 233 234 234 234 235 236

compare 235

edit 234

export 217

pin 236

view , , 233 234 234

as graph 234

as text 234

DbVisualizer 9.2 Users Guide

Page of 427 428

S
schema , , , , 150 150 151 152 154

compare 150

create 150

export 152

filter 154

view relationships 151

script , , , , , , , , 30 156 168 169 170 173 179 185 209

compare 209

edit , , , 156 168 169 170

folding text 169

select rectangular area 170

using macros 168

execute , 173 179

external file 179

managing 185

print 30

settings 306

export import 306

SQL error 180

locate 180

SQL statement , , , , 164 173 181 189 203

analyze performance 181

auto complete 164

create graphically 189

execute 173

format 203

T
tab , , , , , , , , , 36 37 38 38 39 39 41 43 43

arrange 39

change label 41

close 37

color/border 43

floating 39

list open 38

maximize/minimize 38

open 36

pin

DbVisualizer 9.2 Users Guide

Page of 428 428

preserve between sessions 43

table , , , , , , , , , , , , , 23 24 26 30 58 67 80 93 108 110 121 122 123 133

alter 67

compare 121

create , 23 58

edit , 26 93

export 108

import data 110

print 30

relationships , 122 123

navigate 123

view 122

scripting 133

view , 24 80

transaction , , 183 218 278

commit/rollback , 183 218

set isolation level 278

trigger , , 76 142 148

create 76

edit 142

export 148

V
variable 221

view , , , , 134 134 134 134 135

alter 134

create 134

edit 134

export 134

scripting 135

	DbVisualizer 9.2
	Getting Started
	Downloading
	Installing
	Installing with an Installer
	Installation from an archive file
	Installation Notes for ZIP archives (Windows)
	Installation Notes for TAR archives (Unix)
	Installation Notes for RPM archives (Linux)
	Installation Notes for DEB archives (Linux)

	Starting DbVisualizer
	Evaluating the Pro Edition
	Installing a Pro Edition License
	Installing a License Key String
	Installing a License Key File
	Uninstalling the license key

	Creating a Connection - basics
	Using the Connection Wizard
	Setting Up a Connection Manually

	Creating a Table - basics
	Viewing a Table - basics
	Editing a Table - basics
	Executing SQL - basics
	Checking for Updates
	Printing
	Printer Setup
	Printing a Grid, a Chart and Plain Text
	Printing a Graph
	Print Preview

	Getting the Most Out of the GUI
	Main Window Layout
	Tab Types
	Navigation Tabs
	Object View Tabs
	SQL Commander Tabs

	Opening a Tab
	Pinning a Tab
	Closing a Tab
	Listing Open Tabs
	Maximizing and Minimizing a Tab
	Floating a Tab
	Rearranging Tabs
	Changing the Tab Label
	Selecting a Node for a Tab
	Preserving Tabs Between Sessions
	Using Tab Colors and Borders
	Changing the GUI Apperance
	Changing Keyboard Shortcuts

	Managing Database Objects
	Opening a Database Object
	Perform Actions on Multiple Database Objects
	Filtering Database Objects
	Object Filtering
	Inline Objects Filtering

	Object Type Visibility
	Temporarily Disable Filtering
	Filter Sets
	Switching Filter Set

	Show Only Default Database/Schema filter

	Working with Tables
	Creating a Table
	Opening the Create Table Dialog
	Columns Tab
	Primary Key Tab
	Foreign Keys Tab
	Unique Constraints Tab
	Check Constraints Tab
	Indexes Tab
	SQL Preview
	Execute

	Altering a Table
	Opening the Alter Table Dialog
	Columns Tab
	Primary Key Tab
	Foreign Keys Tab
	Unique Constraints Tab
	Check Constraints Tab
	Indexes Tab
	SQL Preview
	Execute

	Creating a Trigger
	Opening the Create Trigger Dialog
	Trigger Editor

	Creating an Index
	Viewing Table Data
	Opening the Data tab
	Sorting
	Where Filter
	Quick Filter
	Max Rows/Max Chars
	Max Rows at First Display
	Column Header Tooltips
	Highlight Primary Key Columns
	Show Only Some Columns
	Auto Resize Columns
	Right-Click Menu Operations
	Creating Monitors
	Aggregation Data for Selection

	Editing Table Data
	Opening the Data tab
	Editing Data in the Grid
	Copy/Paste
	Updates and Deletes Must Match Only One Table Row
	Key Column(s) Chooser
	Editing Multiple Rows
	Data Type checking
	New Line and Carriage Return
	Using the Cell Editor/Viewer
	Using the Form Editor/Viewer
	Preview Changes
	Editing Binary/BLOB and CLOB Data

	Working with Binary and BLOB Data
	Working with Large Text/CLOB Data
	Using Max Rows and Max Chars for a Table
	Changing the Data Display Format
	Date, Time and Timestamp formats
	Number formats

	Exporting a Table
	Output Format
	Output Destination
	Options
	Using Variables in Fields
	Exporting Binary/BLOB and CLOB Data
	Saving And Loading Settings
	Other Ways to Export Table Data

	Importing Table Data
	Input File Format and Other Options
	CSV format page
	Excel format page

	Data Formats and Data Type Per Column
	Matching Columns and Data Types for an Existing Table
	Adjusting Table Declaration for a New Table
	Importing Binary/BLOB and CLOB Data (CSV Only)
	Saving And Loading Settings
	Other Ways to Import Table Data
	Known limitations

	Comparing Tables
	Viewing Table Relationships
	Navigating Table Relationships
	Opening the Navigator
	Navigating Realtionships
	Adding Context Information to the Graph
	Arranging the Graph
	Exporting and Printing the Graph
	Opening the Navigator from the Data tab

	Viewing the Table DDL
	Filtering Tables in the Tree
	Showing Row Count in the Tree
	Using Permissions for Table Data Editing
	Scripting a Table

	Working with Views
	Creating a View
	Altering a View
	Editing a View
	Exporting a View
	Viewing the View DDL
	Filtering Views in the Tree
	Scripting a View

	Working with Procedures, Functions and Other Code Objects
	Creating a Function
	Creating a Procedure
	Creating Other Code Objects
	Editing a Code Object
	Executing a Code Object
	Executing in the Code Editor
	Executing in the SQL Commander
	Using the Script Object Dialog

	Exporting a Code Object
	Scripting a Code Object

	Working with Schemas
	Creating a Schema
	Comparing Schemas
	Viewing Entity Relationships
	Exporting a Schema
	Output Format
	Output Destination
	Object Types
	Options
	Using Variables in Fields
	Saving And Loading Settings

	Filtering Schemas in the Tree

	Working with SQL
	Selecting Database Connection, Catalog and Schema
	Editing SQL Scripts
	Syntax Color Coding
	Charsets and Fonts
	Loading and Saving Scripts
	Drag and Drop a File
	Drag and Drop Database Objects
	Loading and Saving Bookmarks and Monitors
	Navigating Between History Entries
	Confirming Overwriting Unsaved Changes
	SQL Formatting
	Auto Completion
	Recording and Playing Edit Macros
	Folding Selected Text
	Selecting a Rectangular Area
	Tab Key Treatment
	Key Bindings

	Using Editor Templates
	Using a Template
	Creating a new Template
	Editing or Deleting a Template
	Changing the Expand Keybinding

	Executing SQL Statements
	Execute Multiple Statements
	Execute Only the Current Statement
	Control Execution after a Warning or an Error

	Re-Executing SQL Statements
	Using Previous and Next in the SQL Commander
	Using the SQL History Window
	Reusing a History Entry
	Saving a History Entry as a Bookmark or Other File

	Using Quick Load

	Executing Complex Statements
	Using Execute Buffer
	Using an SQL Block
	Using the @delimiter command

	Executing an External Script
	Locating SQL Errors
	Analyzing (explain) Query Performance
	Auto Commit, Commit and Rollback
	Managing Frequently Used SQL
	Creating, Editing and Organizing Bookmarks
	Executing Bookmarks
	Adding a Bookmark as a Favorite
	Sharing Bookmarks
	Using Quick Load

	Creating Queries Graphically
	Creating a Query
	Adding tables
	Joining Tables
	Setting Join Properties
	Removing Tables and Joins
	Specifying Query Details
	SQL Preview

	Testing the Query
	Loading a Query From the Editor
	Properties for the Query Builder
	Express joins as JOIN clause or WHERE condition
	Table and Column Name qualifiers
	Delimited Identifiers

	Current Limitations

	Formatting SQL
	Using Max Rows and Max Chars for Queries
	Getting the DDL for an Object
	Using the Log Tab
	Writing to the Log Tab
	Using the DBMS Output Tab
	Comparing SQL Scripts
	Exporting Query Results
	Automatic table name to file mapping
	Multiple results to a single file
	Using predefined settings
	Limit the number of exported rows

	Using Permissions in the SQL Commander
	Sending Comments to the Database with Statements
	Using Client-Side Commands
	Parameterized SQL - Variables and Parameter Markers
	Using DbVisualizer Variables
	Variable Syntax
	Pre-defined Variables
	Variable Substitution in SQL statements

	Using Parameter Markers
	Named Parameter Markers
	Unnamed Parameter Markers
	Get Parameter Types via JDBC
	Database Support/Driver Support

	Working with Result Sets
	Viewing a Result Set
	Viewing as a Grid
	Viewing as Text
	Viewing as a Graph

	Editing a Result Set
	Exporting a Result Set
	Comparing Result Sets
	Pinning Result Sets
	Show Result Sets in a Separate Window

	Working with Charts
	Charting a Result Set
	Selecting Category Column
	Selecting Series
	Chart Type

	Chart Preferences
	Appearance Preferences
	Series Preferences

	Zooming
	Export

	Exporting a Grid
	Settings page
	Data page
	Generating Test Data

	Preview
	Output Destination
	Settings Menu

	Comparing Data
	Selecting the Objects to Compare
	Comparing Text Data
	Comparing Grids
	Comparing Cell Values

	Monitoring Data Changes
	Creating a Monitored Query
	Monitor table row count
	Monitor table row count difference

	Running a Monitored Query

	Accessing Frequently Used Objects
	Keeping Tabs Open Between Sessions
	Using Favorites
	Using Scripts

	Delimited Identifiers and Qualifiers
	Handling Transactions
	Changing the Auto Commit Setting
	Changing Auto-Commit for a Database Type
	Changing Auto-Commit for a Connection
	Changing Auto-Commit for an SQL Commander tab
	Changing Auto-Commit for a Statement Block

	Setting Transaction Isolation

	Database Connection Options
	Setting Up a Connection Manually
	Setting Up a Connection Manually

	Configuring Connection Properties
	Copying an Existing Connection
	Edit Multiple Database Connections
	Changing the database driver

	Removing a Connection
	Organizing Connections in Folders
	Rearranging Connections and Folders
	Setting Common Authentication Options
	Setting a Master Password
	Specifying a Master Password
	Changing a Master Password
	Resetting the Master Password
	Connecting with a Master Password specified
	Manually Requesting the Master Password for New Connections
	Showing the Encrypted Password in Cleartext
	Declaring a Master Password Rule

	Using Connection Keep-Alive
	Using an SSH Tunnel
	Using Oracle TNS Names
	Using SQL Server Single-Sign-On or Windows Authentication
	Using Variables in Connection Fields
	Automatically Connecting at Startup
	Executing SQL at Connect and Disconnect
	Using a Single Shared Physical Connection
	Selecting the Single Shared Physical Connection Mode
	Data Manipulation with a Single Shared Physical Connection
	Transaction Handling with a Single Shared Physical Connection

	Finding Database Objects and Data
	Finding and Replacing Text in the Editor
	Finding Data in a Grid
	Locating an Object in an SQL Statement
	Locating an Object in the Databases tab
	Searching a Connection

	Exporting and Importing Settings
	Export Settings
	Import Settings

	Command Line Interface
	Command Line Options
	Examples
	Executing single statements
	Executing scripts
	Controlling the output
	Combining OS scripts, the command line interface and DbVisualizer variables

	Database Profiles
	Understanding Database Profiles
	Affected DbVisualizer features
	How a Database Profile is loaded

	Creating a Database Profile
	Extending a Database Profile
	Extending Commands
	Extending Database Objects Tree
	Extending Actions
	Extending Object Views
	Remove an Element
	Complete sample Database Profile

	Top level XML Elements
	XML template
	XML element - DatabaseProfile
	XML element - InitCommands
	XML element - Commands
	XML element - Command
	Result Set
	XML element - Input
	XML element - Output

	XML element - ObjectsTreeDef
	XML element - GroupNode
	XML element - DataNode
	XML element - Command
	XML element - Filter
	XML element - SetVar

	XML element - ObjectsViewDef
	XML element - ObjectView
	XML element - DataView
	Viewers
	Viewer - grid
	Adding custom menu items in the grid
	Setting initial max column width

	Viewer - text
	Specify what column to browse
	Enable SQL formatting of the data
	Adding newline to each row

	Viewer - form
	Viewer - node-form
	Hiding columns

	Viewer - table-refs
	Viewer - tables-refs
	Viewer - table-data
	Disable data editing

	Viewer - table-rowcount

	XML element - Command
	XML element - Input
	XML element - Message

	XML element - ObjectsActionDef
	Introduction
	Variables
	XML element - ActionGroup
	XML element - Action
	XML element - Input
	Style - text (single line)
	Style - text-editor (multi line)
	Style - number
	Style - password
	Style - list (large number of choices)
	Style - radio (limited number of choices)
	Style - check (true/false, on/off, selected/unselected)
	Style - separator (visual divider between input controls)
	Style - grid (configurable multi row/columns input)

	XML element - SetVar
	XML element - Confirm
	XML element - Result
	XML element - Command
	XML element - Message
	Action showing just a message

	Icons
	Introduction
	icons.prefs file
	Icons Search Path

	Conditional Processing
	Introduction
	Conditional processing when database connection is established
	Conditional processing during command execution

	Database Profile Utilities
	Analyze Database Profile
	Show All Type and Icon Attributes
	Show Available Icons
	Export Merged Profile
	Configure Search Path
	Reload Database Profiles List

	Troubleshooting
	Debugging DbVisualizer
	Fixing Connection Issues
	Handling Dropped Connections
	Handling Memory Constraints
	Reporting Issues
	Using special characters in passwords

	Reference Material
	GUI Command Line Arguments
	Installation Structure
	Installing a JDBC Driver
	What is a JDBC Driver?
	Get the JDBC driver file(s)
	Driver Manager
	JDBC Driver Finder
	Loading and Configuring Drivers Manually
	Setup a JDBC driver
	JDBC drivers that requires several JAR or ZIP files
	The JDBC-ODBC bridge

	Errors (why are some paths red?)
	Several versions of the same driver

	Setting Up a JNDI Connection
	Special Properties

	Index

